Государственное бюджетное образовательное учреждение высшего образования Московской области «Университет «Дубна» (государственный университет «Дубна»)

Филиал «Протвино» Кафедра «Техническая Физика»

Рабочая программа дисциплины (модуля)

Основы интроскопии

наименование дисциплины (модуля)

Направление подготовки (специальность) 03.03.02 Физика

код и наименование направления подготовки (специальности)

Уровень высшего образования бакалавриат

бакалавриат, магистратура, специалитет

Направленность (профиль) программы (специализация) «Медицинская физика»

> Форма обучения очная

очная, очно-заочная, заочная

Протвино, 2020

Преподаватель (преподаватели):

Протокол заседания № 3 от «26» июня 2020 г.

Масликов А.А., доцент, к.ф.-м.н., кафедра технической физики Фамилия И.О., должность, ученая степень, ученое звание, кафедра; подпись

Рабочая программа разработана в соответствии с требованиями ФГОС ВО по направлению подготовки (специальности) высшего образования

03.03.02 Физика (код и наименование направления подготовки (специальности)) Программа рассмотрена на заседании кафедры технической физики

И.о. зав. кафедрой технической физики Соколов А.А.

(Ф.И.О., ученая степень, ученое звание, место работы, должность; подпись, заверенная по месту работы)

Оглавление

1 Цели и задачи освоения дисциплины (модуля)	4
2 Объекты профессиональной деятельности при изучении дисциплины (модуля)	1
3 Место дисциплины (модуля) в структуре ОПОП	4
4 Планируемые результаты обучения по дисциплине (модулю), соотнесенные с	
планируемыми результатами освоения образовательной программы (компетенциями	
выпускников)	4
5 Объем дисциплины (модуля) в зачетных единицах с указанием количества академических	
или астрономических часов, выделенных на контактную работу обучающихся с	
преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся	5
6 Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием	
отведенного на них количества академических или астрономических часов и виды учебных	
занятий	5
7 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся	
по дисциплине (модулю) и методические указания для обучающихся по освоению	
дисциплины (модулю))
8 Применяемые образовательные технологии для различных видов учебных занятий и для	
контроля освоения обучающимися запланированных результатов обучения10)
9 Фонд оценочных средств для промежуточной аттестации по дисциплине (модулю)10)
10 Ресурсное обеспечение	5
11 Язык преподавания	7

1 Цели и задачи освоения дисциплины (модуля)

Целью изучения дисциплины «Основы интроскопии» является изучение физических основ интроскопии, математического аппарата, применяемого в медицинских приборах, практических приемов использования приборов в медицине.

В результате освоения дисциплины студент должен научиться применять изученные ранее физические явления и законы в профессиональной деятельности; знать назначение и принципы действия физических приборов, используемых в радиологии и медицинской интроскопии.

Задачи освоения дисциплины «Основы интроскопии»:

- изучить основные принципы и физические законы, используемые в интроскопии человеческого организма;
- освоить математические методы, применяемые к основным процессам, лежащими в основе медицинской интроскопии;
- познакомиться с основами математического аппарата, используемого при реконструкции изображений на основе регистрируемой информации;
- сформировать определенные навыки работы с учебной и научной литературой, научить правильно выражать физические идеи, количественно формулировать и решать физические задачи, возникающие в профессиональной деятельности медицинских физиков;
- иметь ясное представление о принципах работы и устройстве медицинских приборов, используемых в практической деятельности.

2 Объекты профессиональной деятельности при изучении дисциплины (модуля)

Объектами профессиональной деятельности в рамках изучаемой дисциплины (модуля) являются:

- физические системы различного масштаба и уровней организации, процессы их функционирования;
- физические, инженерно-физические, биофизические, химико-физические, медико-физические, природоохранительные технологии;
- физическая экспертиза и мониторинг.

3 Место дисциплины (модуля) в структуре ОПОП

Дисциплина Б1.В.ОД.4 «Основы интроскопии» к вариативной части блока дисциплин учебного плана, изучается в 6-ом семестре (3-ий курс).

Приступая к изучению дисциплины «Основы интроскопии», студент должен знать все разделы модулей Общая физика и теоретическая физика, основы высшей математики в объеме трех курсов университета. Входящие компетенции: ОПК-1, ОПК-2, ОПК-3, ПК-2, ПК-4.

Список дисциплин, для изучения которых необходимы знания данного курса: «Ядерная медицина», «Томографические методы в медицине», «Ультразвуковые методы диагностики».

Освоение данной дисциплины необходимо для прохождения преддипломной практики, выполнения выпускной квалификационной работы — бакалаврской работы и последующей профессиональной деятельности

4 Планируемые результаты обучения по дисциплине (модулю), соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями выпускников)

Раздел заполняется в соответствии с картами компетенций.

Формируемые компетенции (код компетенции, уровень (этап) освоения) (последний – при наличии в карте компетенции)	Планируемые результаты обучения по дисциплине (модулю), характеризующие этапы формирования компетенций
ПК-1- способность использовать специализированные знания в области физики для освоения профильных физических дисциплин.	 Знать свойства и структуру физических процессов, происходящих в различных средах; основные закономерности формирования законов в области теоретической и экспериментальной физики; Уметь **) выстраивать взаимосвязи между физическими науками; решать типичные задачи на основе воспроизведения стандартных алгоритмов решения; объяснять причинно- следственные связи физических процессов; формулировать выводы и приводить примеры; разбираться в используемых методах; подбирать математический аппарат для решения конкретной физической задачи; формулировать задачи для теоретических расчетов процессов в медицинских приборах; находить необходимые справочные материалы из информационных источников, в том числе, из электронных каталогов; производить оценочные расчеты эффективности того или иного физического явления. Владеть **) навыками проведения научно- исследовательского эксперимента, в том числе для исследования физических процессов, протекающих в живых организмах; методами моделирования различных физических ситуаций; навыками публичной речи, ведения дискуссии и полемики.

^{*)} результат обучения сформулирован на основании требований профессиональных стандартов:

5 Объем дисциплины (модуля) в зачетных единицах с указанием количества академических или астрономических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся

Объем дисциплины (модуля) составляет 5 зачетных единицы, всего 180 часов, из которых:

51 час составляет контактная работа	обучающегося с преподавателем ¹ :
17 часов – лекционные занятия;	

34 часа – практические занятия.

_____ часов – мероприятия текущего контроля успеваемости²;

^{- «}Специалист по научно-исследовательским и опытно-конструкторским разработкам» № 32 (приказ Министерства труда и социальной защиты РФ от 4 марта 2014 г. № 121н)

 $^{^{1}}$ Перечень видов учебных занятий уточняется в соответствии с учебным планом.

27 часов – мероприятия промежуточной аттестации⁴ (экзамен), 102 часа составляет самостоятельная работа обучающегося.

6 Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических или астрономических часов и виды учебных занятий

 $^{^2}$ В скобках необходимо сделать уточнение, если мероприятия текущего контроля успеваемости и (или) промежуточной аттестации (например, зачет, дифференцированный зачет) проводятся в рамках занятий семинарского типа, групповых или индивидуальных консультаций.

								В	гом числе:				
		Контактная работа (работа во взаимодействии с преподавателем), часы из них ³							Самостоятельная ра- бота обучающегося, часы, из них				
Наименование и краткое содержание разделов и тем дисциплины (модуля) Форма промежуточной аттестации по дисциплине (модулю)	Всего (часы)	Лекционные занятия	Семинарские занятия	Практические занятия	Лабораторные занятия		Групповые консультации	Индивидуальные консультации	Учебные занятия, направленные на проведение текущего контроля успеваемости (коллоквиумы, практические контрольные занятия и др.)*	Всего	Выполнение домашних заданий	Подготовка рефератов и т.п.	Всего
		1	VI ce	местр		<u>I</u>							
1. Классификация методов интроскопии. Проекционные и томографические методы. Эхозондирование. Математические модели и методы обеспечивающие эффективность перечисленных видов интроскопии. Основы медицинской визуализации.		2		4						6	12		
2. Оптическая томография. Устройство оптического когерентного томографа. Схема сканирующего интерферометра Майкельсона. Пространственное разрешение оптической когерентной томографии. Трансмиссионная оптическая томография. Оптическая диффузионная томография.		2		4						6	12		
3. Рентгенография. Блок-схема цифровой рентгенографической системы. Источники рентгеновского излучения. Рентгеновское излучение, свойства и характеристики. Принципиальная схема рентгеновской трубки с вращающимся анодом. Спектры рентгеновских трубок.		2		4						6	12		ı
4. Радиационная (рентгеновская) компьютерная томография (КТ). Преобразование Радона. Блок-схема рентгеновского томографа. Усилитель рентгеновского изображения. Методы реконструкции изображения. Детекторы рентгеновского излучения. Требования к детекторам компьютерного томографа.		2		8						10	24		
5. Ядерно-Магнитный Резонанс (ЯМР). Расщепление уровней энергии частиц, обладающих ядерным магнитным моментом. Уравнение Лармора. Гиромагнитное от-		2		4						6	12		

[.]

 $^{^{3}}$ Перечень видов учебных занятий уточняется в соответствии с учебным планом.

ношение. Сигнал спада свободной индукции. Релаксация. Взвешенность и контраст изображения. Кодирование сигнала и формирование изображения.								
6. Структурная схема магнитно-резонансного томографа (МРТ) с постоянным и с резистивным магнитами. Структурная схема МРТ со сверхпроводящим магнитом. Преимущества и недостатки МРТ. Диффузионная МРТ. Метод визуализации диффузионного движения.		2	2			4	6	
7. Электроимпедансная томография (ЭИТ). Магнитоиндукционная томография (МИТ). Направления развития ЭИТ. Электрополевая томография (ЭПТ). Электрическая проводимость тканей.		2	4			6	12	
8. Физические основы и технические средства ультразву- ковой визуализации. Ультразвуковые преобразователи и датчики. Импульсный ультразвуковой сигнал и эхограм- ма. Ультразвуковые сканеры. Формирование эхограмм. Ультразвуковые диагностические аппараты. Радио- нуклидная визуализация, физические основы и техниче- ские средства. Позитронная эмиссионная томография.		3	4			7	12	
Промежуточная аттестация <u>экзамен (указывается форма</u> проведения)**	27 ⁴	X					X	
Итого		17	34			51	102	102

^{*}Текущий контроль успеваемости может быть реализован в рамках занятий семинарского типа, групповых или индивидуальных консультаций.

 4 Часы на промежуточную аттестацию (зачет, дифференцированный зачет, экзамен и др.) указываются в случае выделения их в учебном плане.

^{**} Промежуточная аттестация может проходить как в традиционных форма (зачет, экзамен), так и в иных формах: балльно-рейтинговая система, защита портфолио, комплексный экзамен, включающий выполнение практических заданий (возможно наряду с традиционными ответами на вопросы по программе дисциплины (модуля)).

7 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю) и методические указания для обучающихся по освоению дисциплины (модулю)

Методические указания к практическим занятиям. Наименование практических работ.

- 1. Задача по измерению намагниченности образца, помещенного в статическое однородное магнитное поле. Магнитные моменты ядер.
- 2. Расчёты частоты прецессии ядер (Теорема Лармора). Томография на основе ЯМР.
- 3. Применение уравнения Блоха, классическая картина резонанса, вращающаяся система координат, поперечная релаксация, спектрометр непрерывного действия. Импульсные воздействия.
- 4. Оценка толщины резонансного слоя для ЯМР протонов в жидкости (спиновое эхо).
- 5. Фурье-спектроскопия. Двумерная Фурье-томография. Сканирование k-пространства.
- 6. Быстрые методы: градиентное эхо, эхо-планарная томография. Контрастность изображений.
- 7. Изучение приборов регистрации УЗИ основанных на пьезоэлектрическом эффекте и использующих фазированные решетки.
- 8. Применение УЗИ для интроскопии. Задача визуализации процессов и восстановления изображения.
- 9. Численная оценка разрешения прибора УЗИ с эхоимпульсной системой визуализации.
- 10. Расчёт сечения фотоэффекта на различных оболочках.
- 11. Оценка коэффициентов ослабления и поглощения РИ.
- 12. Учёт и расчёты биологического воздействия ионизирующих излучений.
- 13. Расчёт безопасных доз радиационного излучения.
- 14. Компьютерная томография.
- 15. Восстановление трёхмерного изображения с применением преобразования Радона.
- 16. Использование преобразования Фурье для восстановления изображения.
- 17. Оценка параметров процесса при регистрации излучения от радионуклидов.

Методическое обеспечение инновационных форм учебных занятий.

Совместное обсуждение и самостоятельное решение студентами практических задач и заданий на практических занятиях.

Методические указания для самостоятельной работы обучающихся и прочее. Наименование самостоятельных работ.

- Сделать оценку уровней энергии, частот перехода в квантовом рассмотрении магнитного резонанса для заданных параметров и начальных условий.
- Сделать оценку толщины резонансного слоя для ЯМР нейтронов в жидкости (спиновое эхо).
- Показать количественными оценками возможность использования Фурьеобразов для томографии биологических объектов.
 - Оценит контрастность изображений для заданных условий.

Задания, связанные с использованием ультразвука в медицине.

- Задача с применением системы уравнений гидродинамики.
- Задача прохождения звуковой волны через границу двух сред.
- Расчёты доплеровских сдвигов при различных скоростях и углах траектории движения источника.
 - Рентгенография и рентгеноскопия.
 - Компьютерная томография.
 - Учёт и расчёты биологического воздействия ионизирующих излучений.
 - Расчёт безопасных доз радиационного излучения.
- Оценка возможностей специальных рентгенографических методик: флюороскопия и флюорография, ангиография, маммография.
- Восстановление трёхмерного изображения методом обратной проекции с фильтрацией и использованием Фурье-образа.
- Решение задачи восстановления изображения итерационным методом (использовать вычислительные методы и возможности программирования).
 - Однофотонная эмиссионная компьютерная томография (ОФЭКТ).
 - Позитронно-эмиссионная томография (ПЭТ). Совмещенная ПЭТ-КТ.

8 Применяемые образовательные технологии для различных видов учебных занятий и для контроля освоения обучающимися запланированных результатов обучения

Перечень обязательных видов учебной работы студента:

- посещение лекционных занятий;
- ответы на теоретические вопросы на практических занятиях;
- решение практических задач и заданий на практических занятиях;
- сдача самостоятельных практических домашних заданий.

9 Фонд оценочных средств для промежуточной аттестации по дисциплине (модулю)

Перечень компетенций выпускников образовательной программы с указанием результатов обучения (знаний, умений, владений), характеризующих этапы их формирования, описание показателей и критериев оценивания компетенций на различных этапах их формирования.

ПК-1- способность использовать специализированные знания в области физики для освоения профильных физических дисциплин.

Полная карта компетенции ПК-1 приведена в документе «Матрица формирования компетенций» по направлению бакалавриата 03.03.02 «Физика».

- Описание шкал оценивания.

При балльно-рейтинговой системе все знания, умения и навыки, приобретаемые студентами в результате изучения дисциплины, оцениваются в баллах.

Оценка качества работы в рейтинговой системе является накопительной и используется для оценивания системной работы студентов в течение всего периода обучения.

По итогам работы в семестре студент может получить максимально 70 баллов. Итоговой формой контроля в VI семестре является экзамен. На экзамене студент может набрать максимально 30 баллов.

В течение VI семестра студент может заработать баллы за следующие виды работ:

№	Вид работы	Сумма баллов
1	Работа на практических занятиях	33
2	Сдача самостоятельны практических заданий	20
4	Аудиторные занятия (посещение)	17
	Итого:	70

Если к моменту окончания семестра студент набирает от **51** до **70** баллов, то он получает допуск к экзамену.

Если студент к моменту окончания семестра набирает от **61** до **70** баллов, то он может получить автоматическую оценку «удовлетворительно». При желании повысить свою оценку, студент имеет право отказаться от автоматической оценки и сдать экзамен.

Если студент не набрал минимального числа баллов (**51** балл), то он не получает допуск к экзамену.

Соответствие рейтинговых баллов и академических оценок

	1			
Общая сумма	Итоговая оценка			
баллов за семестр	итоговая оценка			
86-100	Отлично			
71-85	Хорошо			
51-70	Допуск к экзамену			
в том числе:				
61-70	Возможность получения автоматической оценки «удовлетворительно»			
51-60	Только допуск к экзамену			
0-50 *	Неудовлетворительно (студент не допущен к экзамену)			

Текущий контроль успеваемости осуществляется в процессе выполнения практических и самостоятельных работ в соответствии с ниже приведенным графиком.

– Критерии и процедуры оценивания результатов обучения по дисциплине (модулю), характеризующих этапы формирования компетенций

Компетенция ПК-1- способность использовать специализированные знания в области физики для освоения профильных физических дисциплин. 5

код и формулировка компетенции

РЕЗУЛЬТАТ ОБУЧЕНИЯ по дисциплине (модулю) *)	Уро- вень освое- ния ком- петен- ции**)	оценива	КРИТЕРИИ ОЦЕНИВАНИЯ РЕЗУЛЬТАТА ОБУЧЕНИЯ по дисциплине (модулю) ШКАЛА оценивания (критерии берутся из соответствующих карт компетенций, шкала оценивания (4 или более шагов) устанавливается в зависимости от того, какая система оценивания (традиционная или балльнорейтинговая) применяется)					
		1	2	3	4	5		
Код 32 (ПК- 1) Знать: свойства и структуру	I - поро- говый	Отсут- ствие знаний	Не имеет представления о физических процессах, происходя-	Знает ос- новные ме- тоды реше- ния типо- вых задач и умеет их	Знает методы корректного использования математического моделирова-	Самостоя- тельно выби- рает и оцени- вает физиче- ский (мате- матический)	Устное собесе- дование	

 $^{^{5}}$ Данная таблица заполняется <u>по каждой компетенции</u>, формирование которой предусмотрено рабочей программой дисциплины (модуля), <u>отдельно</u>.

Γ.	1	1	T	Т	Т		т — 1
физических			щих в раз-	применять	ния при ре-	метод анали-	
процессов,			личных	на практи-	шении теоре-	за физическо-	
происходя-			средах; не	ке; путает	тических и	го процесса;	
щих в раз-			знает ос-	характери-	прикладных	чётко форму-	
_			новные за-	стики фи-	задач; четко	лирует ос-	
личных сре-			кономерно-	зических	формулирует	новные зако-	
дах;			сти форми-	процессов,	основные	номерности	
основные за-			рования законов и	протекаю- щих в раз-	законы тео-	теоретиче- ской и экспе-	
кономерно-			методов	личных	эксперимен-	рименталь-	
сти форми-			теоретиче-	средах; де-	тальной фи-	ной физики.	
рования за-			ской и экс-	лает ошиб-	зики; хорошо	поп физики.	
конов в обла-			перимен-	ки в основ-	знает про-		
			тальной	ной терми-	фессиональ-		
сти теорети-			физики.	нологии и	ную терми-		
ческой и экс-			1	законах	нологию;		
перимен-				фундамен-	понимает		
тальной фи-				тальной и	связи между		
зики;				экспери-	различными		
				ментальной	физическими		
				физики.	понятиями.		
Код УІ		Отсут-	Не умеет	Делает	Умеет вы-	Самостоя-	
(ΠK-1)		ствие	использо-	ошибки в	страивать	тельно умеет	
Уметь:		уме-	вать физи-	используе-	взаимосвязи	выстраивать	
выстраивать		ний	ческую	мой терми-	между физи-	взаимосвязи	
взаимосвязи			терминоло-	нологии; не	ческими	между физи-	
между физиче-			гию; не ви-	всегда ви-	науками; хо-	ческими	
скими науками;			дит связи	дит связь	рошо умеет	науками;	
решать типич-			между фи-	между фи-	решать ти-	умеет уве- ренно объяс-	
ные задачи на основе воспро-			зическими науками; не	зическими науками;	пичные зада- чи; объяснять	нять причин-	
изведения стан-			умеет ана-	умеет ре-	причинно-	но- след-	
дартных алго-			лизировать,	шать только	следственные	ственные	
ритмов реше-			делать вы-	типичные	связи физи-	связи физи-	
ния;			воды и при-	задачи; по-	ческих про-	ческих про-	
объяснять при-			водить	верхностно	цессов; ана-	цессов; умеет	
чинно- след-			примеры;	анализиру-	лизировать,	самостоя-	
ственные связи			не разбира-	ет; спосо-	делать выво-	тельно анали-	
физических			ется в ис-	бен интер-	ды и приво-	зировать,	
процессов;			пользуемых	претировать	дить приме-	делать выво-	Выполне-
формулировать	I -		методах, не	только ти-	ры; хорошо	ды и приво-	ние
выводы и при-	поро-		в состоянии	пичные яв-	разбирается в	дить нетри-	практи-
водить приме-	говый		найти нуж-	ления; сла-	используе-	виальные	ческого
ры;	ТОВЫИ		ную ин-	бо разбира-	мых методах;	примеры;	задания
разбираться в			формацию	ется в ис-	умеет само-	отлично раз-	
используемых			и сформу-	пользуемых	стоятельно	бирается в	
методах;			лировать	методах.	находить не-	используе-	
подбирать ма- тематический			цели и за- дачи иссле-		обходимую информацию;	мых методах; умеет само-	
аппарат для			дований; не		умеет форму-	стоятельно	
решения кон-			способен		лировать це-	находить не-	
кретной физи-			оценить		лировать це-	обходимую	
ческой задачи;			эффектив-		исследова-	информацию;	
формулировать			ность тре-		ний.	формулиро-	
задачи для тео-			буемого			вать цели и	
ретических рас-			метода.			задачи иссле-	
четов процессов						дований и	
в медицинских						производить	
приборах;						оценочные	
находить необ-						расчеты эф-	
ходимые спра-						фективности	
вочные матери-						того или ино-	
алы из инфор-						го физиче-	

	1	T	T	Т	T	T	T
мационных ис-						ского явле-	
точников, в том						ния.	
числе, из элек-							
тронных ката-							
логов;							
производить							
оценочные рас-							
четы эффектив-							
ности того или							
иного физиче-							
ского явления.							
		От-	Не владеет	Не всегда	В состоянии	Свободно	
		сут-	учебным	в состоя-	проводить	ориентиру-	
		ствие	материа-		_	ется в спо-	
10 > D2			_	нии про-	эксперимен-		
Код В2		вла-	лом и спе-	демон-	тальные ис-	собах воз-	
(ΠK-1)		дения	циализи-	стрировать	следования	действия на	
Владеть:			рованны-	оптималь-	под руко-	аудиторию;	
навыками			ми знани-	ность вы-	водством	уверенно	
проведения			ями в об-	бранного	опытного	владеет	
научно- ис-			ласти фи-	метода	преподава-	навыком	
•			зики; не	исследо-	теля; хоро-	прогнозиро-	
следователь-			владеет	вания и	шо владеет	вания ре-	
ского экспе-			навыками	объяснить	навыками	зультатов	
римента, в			проведе-	его задачи	синтеза раз-	применения	
том числе			ния науч-	и функ-	личных ме-	различных	
для исследо-			но- иссле-	ции; не	тодов мате-	математиче-	
вания физи-			дователь-	использует	матического	ских и про-	
ческих про-			ского экс-	професси-	аппарата и	граммных	
цессов, про-			перимента;	ональную	программи-	методов при	Выполне-
текающих в	I -		не облада-	термино-	рования для	решении	ние
	поро-		ет способ-	логию при	их эффек-	физических	практи-
живых орга-	говый		ностью	презента-	тивного ис-	задач; само-	ческого
низмах;			вести кор-	ции по-	пользования	стоятельно	задания
методами			ректную	строенных	в професси-	проводит	
моделирова-			дискуссию	моделей;	ональной	научно-	
ния различ-			в процессе	слабо вла-	деятельно-	исследова-	
ных физиче-			представ-	деет пра-	сти; в состо-	тельский	
ских ситуа-			ления ре-	вилами и	янии проде-	экспери-	
ций;			зультатов	приемами	монстриро-	мент.	
			собствен-	ведения	вать, объяс-		
навыками			ной теоре-	дискуссии	нить и за-		
публичной			тической	в процессе	щитить по-		
речи, веде-			работы	представ-	строенную		
ния дискус-			или экспе-	ления ма-	математиче-		
сии и поле-			римента.	тематиче-	скую или		
мики.			Pillia.	ской моде-	физическую		
				ли и ре-	модель.		
				зультатов	тодоль.		
				экспери-			
				_			
	1			мента.			İ

[–] Типовые контрольные задания или иные материалы, необходимые для оценки результатов обучения, характеризующих этапы формирования компетенций и (или) для итогового контроля сформированности компетенции.

Список вопросов к экзамену

- 1. Рентгеновское излучение, частота, природа возникновения, спектр.
- 2. Поглощение рентгеновского излучения. Фотопоглощение, рассеяние.
- 3. Рентгенография. Рентгеноскопия.
- 4. Рентгеновские трубки, принципиальная схема.
- 5. Рентгеновские трубки, характеристики. Источники электропитания.
- 6. Рентгеновские излучатели. Устройства формирования пучка.
- 7. Приемники-регистраторы рентгеновских изображений. Рентгеновские отсеивающие решетки.
- 8. Рентгеновские фотоплёнки, характеристики.
- 9. Детекторы рентгеновских излучений, типы и принципы работы.
- 10. Аналоговые приемники-преобразователи рентгеновских изображений.
- 11. Аналого-цифровые приемники-преобразователи, характеристики. Технологии преобразования.
- 12. Цифровые приемники-преобразователи рентгеновских изображений, характеристики.
- 13. Рентгеновские диагностические аппараты.
- 14. Рентгеновская томография, математические принципы, виды.
- 15. Преобразование Радона. Математические методы восстановления изображения.
- 16. Системы сканирования компьютерных томографов.
- 17. Рентгеновские трубки для компьютерных томографов.
- 18. Структурная схема и технические характеристики компьютерных томографов.
- 19. Магнитные свойства нуклонов и ядер.
- 20. Ядерно-магнитный резонанс, физические принципы.
- 21. Ядерно-магнитный резонанс, эффекты спин-эхо и мультиспин-эхо.
- 22. Ядерно-магнитный резонанс. Пространственная локализация, градиентные поля.
- 23. Магнитно-резонансная томография, структурная схема.
- 24. Магниты в магнитно-резонансной томографии.
- 25. Методы получения магнитно-резонансных изображений.
- 26. Ультразвуковые волны, их характеристики. Физические явления используемые в ультразвуковой визуализации.
- 27. Распространение ультразвука в биологических тканях.
- 28. Ультразвуковые преобразователи и датчики. Пьезоэффекты.
- 29. Схема пьезоэлектрических преобразователей. Антенные решётки.
- 30. Формирование эхограмм.
- 31. Ультразвуковые способы сканирования. Сканеры.
- 32. Характеристики акустических изображений. Фокусировка ультразвукового луча.
- 33. Ультразвуковая доплеровская эхография.
- 34. Ультразвуковые диагностические аппараты.
- 35. Физические основы радионуклидной визуализации.
- 36. Гамма-топография.
- 37. Однофотонные эмиссионные компьютерные томографы.
- 38. Позитронная эмиссионная томография.
- 39. Общие сведения о тепловизорах.
- 40. Многодетекторные приёмники инфракрасного излучения.

 Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

Процедура промежуточной аттестации проходит в соответствии с «Положением балльно-рейтинговой системе оценки и текущем контроле успеваемости студентов», а также «Положением о промежуточной аттестации» университета «Дубна».

10 Ресурсное обеспечение

• Перечень основной и дополнительной учебной литературы Основная учебная литература

- 1. Илясов Л.В. Физические основы и технические средства медицинской визуализации : Учебное пособие / Л. В. Илясов. 2-е изд.,стер. СПб. : Лань, 2017. 324с. : ил. (Учебники для вузов. Специальная литература). ISBN 978-5-8114-2643-0 Илясов, Л. В. Физические основы и технические средства медицинской визуализации : учебное пособие / Л. В. Илясов. 2-е изд., стер. Санкт-Петербург : Лань, 2017. 324 с. ISBN 978-5-8114-2643-0. Текст : электронный. // ЭБС "Лань". URL: https://e.lanbook.com/book/95140 (дата обращения: 11.04.2020). Режим доступа: ограниченный по логину и паролю
- 2. Кудряшов Ю.Б. Радиационная биофизика: сверхнизкочастотные электромагнитные излучения: Учебник / Ю. Б. Кудряшов, А. Б. Рубин. Москва: Физматлит, 2014. 216с.: ил. ISBN 978-5-9221-1565-0.
- 3. Лещенко В.Г. Медицинская и биологическая физика: Учебное пособие / В. Г. Лещенко, Г. К. Ильич. Минск; М.: Новое знание: ИНФРА-М, 2017. 552с.: ил. (Высшее образование). ISBN 978-985-475-456-7. Лещенко, В. Г. Медицинская и биологическая физика: учеб. пособие / В.Г. Лещенко, Г.К. Ильич. Минск: Новое знание; Москва: ИНФРА-М, 2017. 552 с.: ил. (Высшее образование). ISBN 978-5-16-105685-1. Текст: электронный. // ЭБС "Znanium.com". URL: https://znanium.com/catalog/product/766789 (дата обращения: 10.04.2020). Режим доступа: ограниченный по логину и паролю

Дополнительная учебная литература

- 1. Нефедов Е.И. Взаимодействие физических полей с биологическими объектами (с основами проектирования высокочастотной медико-биологической аппаратуры) : Учебное пособие / Е. И. Нефедов, Т. И. Субботина, А. А. Яшин; под ред. Е.И.Нефедова и А.А.Хадарцева. М. : КУРС : ИНФРА-М, 2018. 344с. : ил. ISBN 978-5-906818-19-5. ISBN 978-5-16-011739-3
- 2. Нефедов, Е. И. Взаимодействие физических полей с биологическими объектами (с основами проектирования высокочастотной медико-биологической аппаратуры) : учеб. пособие / Е.И. Нефедов, Т.И. Субботина, А.А. Яшин ; под ред. Е.И. Нефёдова, А.А. Хадарцева. Москва : КУРС, НИЦ ИНФРА-М, 2018. 344 с. ISBN 978-5-16-103867-3. Текст : электронный. // ЭБС "Znanium.com". URL: https://znanium.com/catalog/product/944376 (дата обращения: 11.04.2020). Режим доступа: ограниченный по логину и паролю.
- 3. Немирко А.П. Математический анализ биомедицинских сигналов и данных / А. П. Немирко, Л. А. Манило, А. Н. Калиниченко. Москва : Физматлит, 2017. 248с. : ил. ISBN 978-5-9221-1720-3.
- 4. Сергеев, Н. А. Основы квантовой теории ядерного магнитного резонанса: монография / Н. А. Сергеев, Д. С. Рябушкин. Москва: Логос, 2013. 272 с. ISBN 978-5-98704-754-5. Текст: электронный. // ЭБС "Znanium.com". URL: https://znanium.com/catalog/product/469025 (дата обращения: 11.04.2020). Режим доступа: ограниченный по логину и паролю

• Периодические издания

1. Журнал экспериментальной и теоретической физики: / Учредитель: РАН, Институт физических проблем им. П.Л. Капицы РАН; гл. ред. акад. Андреев А.Ф. - М.: ФГБУ «Рос-

- сийская академия наук». Журнал выходит 1раз в мес. Основан в 1931 году. ISSN 0044-4510. Текст : электронный. Полные тексты статей журнала доступны по подписке на сайте научной электронной библиотеки «eLIBRARY.RU»: https://www.elibrary.ru/title_about.asp?id=8682
- 2. Медицинская физика: научно-техническое издание / Учредитель: Ассоциация медицинских физиков России; гл. ред. Наркевич Б.Я, д.т.н., проф., в.н.с. М.: Ассоциация медицинских физиков России. –журнал выходит 2 раза в полуг. Основан в 1995 году. ISSN: 1810-200X. Текст : электронный. Полные электронные версии статей журнала доступны по подписке на сайте научной электронной библиотеки «eLIBRARY.RU»: https://www.elibrary.ru/contents.asp?id=42372751
- 3. Ядерная физика: научный журнал / Учредитель: Институт теоретической и экспериментальной физики им. А.И. Алиханова НИЦ "Курчатовский институт"; гл. ред.: Далькаров О.Д. М.: ООО «ИКЦ «Академкнига». Журнал выходит 6 раз в год. Журнал основан в 1965 году. ISSN 0044-0027. Текст : электронный. Полные электронные версии статей журнала доступны по подписке на сайте научной электронной библиотеки «eLIBRARY.RU»: https://www.elibrary.ru/title_about_new.asp?id=8304
- 4. Вестник Московского государственного областного университета. Серия: физикаматематика: научный журнал / Учредитель: Московский государственный областной университет; гл. ред. Бугаев А.С. М.:МГОУ. Журнал выходит 6 раз в год. Основан в 1998 году ISSN 2310-7251. Текст: электронный. Полные электронные версии статей журнала доступны на сайте научной электронной библиотеки «eLIBRARY.RU»: https://elibrary.ru/title_about.asp?id=25657

• Перечень ресурсов информационно-телекоммуникационной сети «Интернет» Электронно-библиотечные системы и базы данных

- 1. 9EC «Znanium.com»: http://znanium.com/
- 2. ЭБС «Лань»: https://e.lanbook.com/
- 3. ЭБС «Юрайт»: https://biblio-online.ru/
- 4. ЭБС «Университетская библиотека онлайн»: http://biblioclub.ru/
- 5. Научная электронная библиотека (РУНЭБ) «eLIBRARY.RU»: http://elibrary.ru
- 6. Национальная электронная библиотека (НЭБ): http://нэб.рф/
- 7. Базы данных российских журналов компании «East View»: https://dlib.eastview.com/

Научные поисковые системы

- 1. Math-Net.Ru современная информационная система, предоставляющая российским и зарубежным математикам различные возможности поиска информации о математической жизни в России http://www.mathnet.ru/
- 2. Google Scholar поисковая система по научной литературе. Включает статьи крупных научных издательств, архивы препринтов, публикации на сайтах университетов, научных обществ и других научных организаций https://scholar.google.ru/
- 3. SciGuide навигатор по зарубежным научным электронным ресурсам открытого доступа. http://www.prometeus.nsc.ru/sciguide/page0601.ssi
- 4. ArXiv.org научно-поисковая система, специализируется в областях: компьютерных наук, астрофизики, физики, математики, квантовой биологии. http://arxiv.org/
- 5. WorldWideScience.org глобальная научная поисковая система, которая осуществляет поиск информации по национальным и международным научным базам данных и порталам. http://worldwidescience.org/

Профессиональные ресурсы сети «Интернет»

- 1. Федеральная информационная система «Единое окно доступа к информационным ресурсам»: http://window.edu.ru/
- 2. Образовательный математический сайт EXPonenta.ru: http://exponenta.ru/default.asp

- 3. Математический сайт Math.ru: http://math.ru/lib/
- 4. Сайт РАН Институт Вычислительной математики: http://www.inm.ras.ru/
 - Перечень информационных технологий, используемых при осуществлении образовательного процесса, включая программное обеспечение, информационные справочные системы

Проведение практических занятий по дисциплине предполагается использование специализированных аудиторий, оснащенных персональными компьютерами, объединенными в локальную сеть и имеющих доступ к ресурсам глобальной сети Интернет.

Для выполнения заданий самостоятельной подготовки обучающиеся обеспечиваются литературой, а также в определённом порядке могут получать доступ к информационным ресурсам Интернета.

Дисциплина обеспечена необходимым программным обеспечением, которое находится в свободном доступе (программы OpenOffice, свободная лицензия, код доступа не требуется).

• Описание материально-технической базы

TC	U	
Компьюте	пиыи	кпасс
TOMINDIOIC	PHULL	made.

11 Язык преподавания

Русский