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We investigate the phase portrait of the (1þ 1)-dimensional massless two-flavored NJL2 model

containing a quark number chemical potential � and an isospin chemical potential �I in the limit of a

large number of colors Nc ! 1. Particular attention is paid to the question of to what extent the inclusion

of an isospin asymmetry affects chiral condensates to have a spatial inhomogeneity in the form of the so-

called chiral density waves (CDW) (chiral spirals). It is shown that, at zero temperature and comparatively

small values of �, i.e. at �<�c � 0:68M0 (M0 is the dynamical quark mass in the vacuum), only the

homogeneous charged pion condensation phase is realized for arbitrary nonzero values of �I. Contrary to

this, for large values of �>�c, two CDW phases appear in the ð�I;�Þ-phase diagram of the model. In

the first phase, CDWs are clockwise twisted chiral spirals, and in the second phase they are counter-

clockwise. The influence of nonzero temperature on the formation of the CDW phases is also investigated.
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I. INTRODUCTION

During the last decade, much attention has been attracted
to the investigation of the QCD phase diagram in terms of
quark number as well as isospin chemical potentials. First of
all, this is motivated by heavy-ion collision experiments
where dense baryonic matter has an evident isospin asym-
metry, i.e. different neutron and proton contents of initial
ions. Moreover, the dense hadronic/quark matter inside co-
mpact stars is also expected to be isotopically asymmetric.
Generally speaking, it is understood that one of the impor-
tant challenges for QCD is to describe the dense and hot
baryonic matter in different physical situations. However, in
the above-mentioned realistic situations, the quark density is
rather small, and weak coupling QCD analysis is not appli-
cable. So, different nonperturbative methods or effective
theories such as chiral effective Lagrangians and especially
Nambu–Jona-Lasinio (NJL) type models [1] are usually
employed for the consideration of the properties of dense
and hot baryonic matter under the conditions of heavy-ion
experiments or in the compact star’s interior, i.e. in the
presence of external factors such as temperature, chemical
potentials, magnetic field, finite size effects, etc. (see, e.g.,
[2–8] and references therein). In particular, phenomena of
dense quark matter like color superconductivity [2,4–6] as
well as charged pion condensation [9–11] were investigated
in the framework of these QCD-like effective models.

It should be noted that an effective description of QCD
in terms of NJL models, i.e. through an employment of
four-fermionic theories in (3þ 1)-dimensional spacetime,
is usually valid only at comparatively low energies and
densities. At the same time, (1þ 1)-dimensional Gross-
Neveu (GN) type models [12,13] are valid also at high
energy and density, and due to their properties of renorma-
lizability, asymptotic freedom and spontaneous chiral

symmetry breaking, can also be used for a reasonable quali-
tative modeling of QCD even at finite temperature and
hadron density [14–18]. Because of the relative simplicity
of GNmodels in the leading order of the largeNc-expansion
(Nc is the number of colored quarks), their use is convenient
for the application of nonperturbative methods in quantum
field theory [19]. Moreover, it is worth noting that it is in the
leading order of the largeNc-expansion that thewell-known
no-go theorem of Mermin-Wagner-Coleman [20], appar-
ently forbidding the spontaneous breaking of continuous
symmetries in the (1þ 1)-dimensional models, becomes
invalid [15–18]. (It means that, in the largeNc limit quantum
fluctuations, which would otherwise destroy a long-range
order corresponding to a spontaneous symmetry breaking,
are suppressed by 1=Nc factors.) Note also that GN type
models are quite suitable for the description of physics in
quasi–one-dimensional condensed matter systems such as
polyacetylene [21].
Thus, such phenomena of dense QCD as color super-

conductivity, where the color group is broken spontane-
ously, and charged pion condensation, where spontaneous
breaking of the continuous isospin symmetry takes place,
might be modeled in terms of renormalizable (1þ 1)-
dimensional GN type models (see, e.g., [16,17,22–24],
respectively).
In our previous papers [22–24], the phase diagram of a

(1þ 1)-dimensional SULð2Þ � SURð2Þ symmetric NJL
model1 with two massless or massive quark flavors was

1In this paper we shall use the notation NJL model for theories
with four-fermionic interactions also for (1þ 1)-dimensional
models with a continuous chiral symmetry group instead of
‘‘chiral 2D GN model’’ due to the fact that the chiral structure
of the Lagrangian is indeed closely related to the (3þ 1)-
dimensional NJL model.
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investigated in the leading order of the 1=Nc-expansion
and in the presence of the quark number as well as isospin
chemical potentials. There we considered the case of order
parameters (condensates) that are homogeneous, i.e. inde-
pendent of the space coordinate. The situation corresponds
to the conserved Lorentz and spatial translational invari-
ance and is adequate to physical systems in vacuum, i.e. at
zero chemical potentials. In dense baryonic matter, i.e. at
nonzero quark number chemical potential, there might
appear new phases with a spatially inhomogeneous chiral
condensate which destroys both chiral and spatial transla-
tional invariance of the system. (See the relevant discus-
sions made in the framework of both (1þ 1)-dimensional
[18,25,26] and (3þ 1)-dimensional [27–31] models.)
Thus, in this paper and in contrast to [22–24], we consider
the phase portrait of the above-mentioned massless
SULð2Þ � SURð2Þ symmetric NJL model with two chemi-
cal potentials in the leading order of the 1=Nc-expansion,
taking into account the possibility that the chiral conden-
sate might become inhomogeneous and take the form of a
(dual) chiral density wave (CDW). In this case the scalar
quark-antiquark condensate, h �qqi, and the pseudoscalar
condensate of neutral �0 mesons, h �q�5�3qi, form a chiral
spiral, i.e.

h �qqi � cos2bx; h �q�5�3qi � sin2bx;

where �3 is the isospin Pauli matrix, x is the space coor-
dinate, and b is a wave vector which has to be determined
dynamically through the thermodynamic potential. It is
necessary to point out that the inhomogeneous CDW con-
densate is relevant to dense quark matter [32] and the chiral
magnetic effect [33]. Both phenomena probably might be
observed in heavy-ion collision experiments, where iso-
topic asymmetry is an inevitable property. So, we believe
that the investigation of CDW condensates in the frame-
work of the two-dimensional NJL model with isospin
chemical potential could shed some light on the physics
of heavy-ion collisions. It should be noted, however, that
our investigation of a condensate inhomogeneity in the
form of the chiral density wave is only a first step. There
may exist, at least at zero isospin chemical potential, other
more preferable spatially nonuniform ground state con-
figurations of the chiral condensate like, for instance, chiral
crystals [25,26,29] (in the last case, only the scalar h �qqi
condensate is an inhomogeneous quantity, and other con-
densates are homogeneous ones), but, in general, they are
much harder to deal with. For technical reasons, in study-
ing CDW configurations we do not take into account a
nonzero bare (current) quark mass, although recently some
efforts to get rid of this assumption have been made [30].

The paper is organized as follows. In Sec. II, we derive
in the leading order of the large Nc-expansion the expres-
sion for the thermodynamic potential of the SULð2Þ �
SURð2Þ symmetric massless NJL2 model with quark num-
ber chemical potential� and isospin chemical potential�I

at zero temperature. Here we also consider the possibility
of a spatial inhomogeneity for the chiral condensates in the
form of the so-called chiral density waves. First, the phase
portrait of the model is discussed in the simple case of
spatially homogeneous condensates in Sec. III, and then, in
Sec. IV, the phase structure of the model in terms of � and
�I and at zero temperature is investigated for CDW in-
homogeneous phases. The influence of nonzero tempera-
ture on the formation of CDW phases is considered in
Sec. V. Finally, Sec. VI presents some concluding remarks.

II. THE MODEL AND ITS EFFECTIVE ACTION

We consider a (1þ 1)-dimensional NJL-type model
with two massless quark flavors (u and d quarks) to mimic
properties of real dense quark matter. Its Lagrangian has
the form

L ¼ �q

�
��i@� þ��0 þ�I

2
�3�

0

�
qþ G

Nc

½ð �qqÞ2

þ ð �qi�5 ~�qÞ2�; (1)

where our choice for the gamma matrices in (1þ 1)-
dimensions is as follows: �0 ¼ �2, �1 ¼ i�1, �5 ¼
�0�1 ¼ �3, and the quark field qðxÞ � qi�ðxÞ is a flavor
doublet (i ¼ 1, 2 or i ¼ u, d) with corresponding Pauli
matrices �k (k ¼ 1, 2, 3) and color Nc-plet (� ¼
1; . . . ; Nc), as well as a two-component Dirac spinor.
(The summation in (1) over flavor, color, and spinor indices
is implied.) The quark number chemical potential � in (1)
is responsible for the nonzero baryonic density of quark
matter, whereas the isospin chemical potential �I is taken
into account in order to study asymmetric quark matter at
nonzero isospin densities. (In this case, the densities of u
and d quarks are different.) Evidently, the model (1) is a
generalization of the original (1þ 1)-dimensional Gross-
Neveu model [12] with a single quark to the case of two
quark flavors and additional chemical potentials. As a
result, we have for our model a more complicated chiral
symmetry group. Indeed, at �I ¼ 0 apart from the global
color SUðNcÞ symmetry, the Lagrangian (1) is invariant
under transformations of the chiral SULð2Þ � SURð2Þ
group. However, at �I � 0, this symmetry is reduced to
UI3Lð1Þ �UI3Rð1Þ, where I3 ¼ �3=2 is the third compo-

nent of the isospin operator. (As usual, the subscripts
L, R mean that the corresponding group acts only on the
left-, right-handed spinors, respectively.) Evidently, this
symmetry can also be presented as UI3ð1Þ �UAI3ð1Þ,
where UI3ð1Þ, UAI3ð1Þ denote the isospin and the axial

isospin subgroups, respectively. Quarks are transformed
under these subgroups as q ! expði��3Þq and q !
expði��5�3Þq, respectively.2 Notice that Lagrangian (1)
is parity invariant.

2Recall that expði��3Þ ¼ cos�þ i�3 sin�, expði��5�3Þ ¼
cos�þ i�5�3 sin�.
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The linearized version of Lagrangian (1), which contains
composite bosonic fields �ðxÞ and �aðxÞ (a ¼ 1, 2, 3), has
the following form:

~L ¼ �q½��i@� þ��0 þ ��3�
0 � �� i�5�a�a�q

� Nc

4G
½�2 þ �2

a�; (2)

where � ¼ �I=2. Evidently, the Lagrangian (2) is equiva-
lent to (1), which simply follows from the use of the
following constraint equations for the bosonic fields:

�ðxÞ ¼ �2
G

Nc

ð �qqÞ; �aðxÞ ¼ �2
G

Nc

ð �qi�5�aqÞ: (3)

Furthermore, it is clear from (3) and footnote 2 that the
bosonic fields transform under the isospin UI3ð1Þ and axial
isospin UAI3ð1Þ subgroups in the following manner:

UI3ð1Þ: � ! �; �3 ! �3;

�1 ! cosð2�Þ�1 þ sinð2�Þ�2;

�2 ! cosð2�Þ�2 � sinð2�Þ�1; UAI3ð1Þ: �1 ! �1;

�2 ! �2; � ! cosð2�Þ�þ sinð2�Þ�3;

�3 ! cosð2�Þ�3 � sinð2�Þ�: (4)

Starting from Lagrangian (2), one obtains in the leading
order of the large Nc-expansion (i.e. in the one-fermion
loop approximation) the following path integral expression
for the effective action Seffð�;�aÞ of the bosonic �ðxÞ and
�aðxÞ fields:

expðiSeffð�;�aÞÞ ¼ N0 Z ½d �q�½dq� exp
�
i
Z

~Ld2x

�
;

where

S effð�;�aÞ ¼ �Nc

Z
d2x

�
�2 þ �2

a

4G

�
þ ~Seff ; (5)

and N0 is a normalization constant. The quark contribution

to the effective action, i.e. the term ~Seff in (5), is given by

expði~SeffÞ ¼ N0 Z ½d �q�½dq� exp
�
i
Z
f �q½��i@� þ��0

þ ��3�
0 � �� i�5�a�a�qgd2x

�
: (6)

The ground state expectation values h�ðxÞi and h�aðxÞi of
the composite bosonic fields are determined by the saddle
point equations,

	Seff

	�ðxÞ ¼ 0;
	Seff

	�aðxÞ ¼ 0; (7)

where a ¼ 1, 2, 3. In vacuum, i.e. in the state correspond-
ing to an empty space with zero particle density and zero
values of the chemical potentials � and �I, the quantities
h�ðxÞi and h�aðxÞi do not depend on space coordinates.
However, in a dense medium, when � � 0, �I � 0, the

ground state expectation values of bosonic fields might
have a nontrivial dependence on x. In particular, in this
paper we will use the following ansatz:

h�ðxÞi ¼ M cosð2bxÞ; h�3ðxÞi ¼ M sinð2bxÞ;
h�1ðxÞi ¼ �; h�2ðxÞi ¼ 0;

(8)

where M, b and � are constant quantities. In fact, they are
coordinates of the global minimum point of the thermody-
namic potential (TDP)�ðM;b;�Þ.3 In the leading order of
the large Nc-expansion, it is defined by the following
expression:

Z
d2x�ðM;b;�Þ

¼ � 1

Nc

Sefff�ðxÞ; �aðxÞgj�ðxÞ¼h�ðxÞi;�aðxÞ¼h�aðxÞi; (9)

which gives

i
Z
d2x�ðM;b;�Þ¼ i

Z
d2x

M2þ�2

4G
� 1

Nc

ln

�Z
½d �q�½dq�

�exp

�
i
Z
d2x �qDq

��
; (10)

where

D ¼ ��i@� þ��0 þ ��3�
0 �M expð2i�5�3bxÞ

� i�5�1�: (11)

To proceed, let us introduce the new quark fields,
qw ¼ expði�5�3bxÞq and �qw ¼ �q expði�5�3bxÞ, such that

�qDq¼ �qw½��i@�þ��0þðbþ�Þ�3�0�M� i�5�1��qw
� �qwDqw; (12)

where instead of the x-dependent Dirac operator (11) a new
x-independent operator appears:

D ¼ ��i@� þ��0 þ ðbþ �Þ�3�0 �M� i�5�1�: (13)

Since this transformation of quark fields does not change
the path integral measure in (10),4 expression (10) for the
thermodynamic potential is easily transformed into the
following one:

3Here and in the following we will use a rather conventional
notation, ‘‘global’’ minimum, in the sense that among all our
numerically found local minima the thermodynamical potential
takes in their case the lowest value. This does not exclude the
possibility that there exist other inhomogeneous condensates,
different from (8), which lead to ground states with even lower
values of the TDP.

4This nontrivial fact follows from the investigations by
Fujikawa [34], who established that a chiral transformation of
spinor fields changes the path integral measure only in the case
when there is an interaction between spinor and gauge fields.
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�ðM;b;�Þ ¼ M2 þ �2

4G
þ i

Trsfx lnD

Nc

R
d2x

¼ M2 þ �2

4G
þ iTrsf

Z d2p

ð2�Þ2 lnðpþ��0

þ ðbþ �Þ�3�0 �M� i�5��1Þ; (14)

where the Tr-operation Trsfx stands for the trace in

spinor- (s), flavor- (f) as well as two-dimensional
coordinate- (x) spaces, respectively, and Trsf is the respec-

tive trace without x-space. Since the thermodynamic
potential (14) is formally equal to the TDP (9) of paper
[22] when one performs the replacement � ! bþ �, one
can further use the corresponding techniques and obtain

�ðM;b;�Þ ¼ M2 þ �2

4G
þ i

Z d2p

ð2�Þ2 lnf½ðp0 þ�Þ2

� ðEþ
� Þ2�½ðp0 þ�Þ2 � ðE�

� Þ2�g; (15)

where

E�
� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE�Þ2þ�2

q
; E�¼E�ðbþ�Þ; E¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1þM2

q
:

(16)

The argument of the lnðxÞ-function in (15) is proportional
to the inverse quark propagator in the energy-momentum
space representation. Hence, its zeros are the poles of
the quark propagator. So, using (15), one can find the
dispersion laws for quasiparticles, i.e. the momentum de-
pendence of the quark ðp0u; p0dÞ and antiquark ðp0 �u; p0 �dÞ
energies, in a medium (the full expression of the quark
propagator matrix is presented in Appendix B of
paper [23]):

p0u ¼ E�
� ��; p0d ¼ Eþ

� ��;

p0 �u ¼ �ðEþ
� þ�Þ; p0 �d ¼ �ðE�

� þ�Þ: (17)

It is clear that expression (15) is symmetric with respect to
the transformations � ! �� and ðbþ �Þ ! �ðbþ �Þ,
respectively. Thus, without loss of generality, it is sufficient
to adopt the restrictions � � 0 and ðbþ �Þ � 0. Under
these conditions, upon integrating in (15) over p0 (see
Ref. [22] for similar integrals), one obtains for the TDP
of the system at zero temperature the following expression:

�ðM;b;�Þ ¼ M2 þ �2

4G
�

Z 1

0

dp1

�
fEþ

� þ E�
�

þ ð�� Eþ
� Þ
ð�� Eþ

� Þ
þ ð�� E�

� Þ
ð�� E�
� Þg; (18)

where 
ðxÞ is the Heaviside theta-function.

III. HOMOGENEOUS CHIRAL
CONDENSATE, b ¼ 0

A. The case with flavor symmetry, �I ¼ 0

First of all, let us consider the vacuum case, i.e. when
� ¼ 0, �I ¼ 0 and temperature is zero. Since in QCD
parity is not broken in the vacuum, it is necessary in all
QCD-motivated theories to adopt the same requirement.
In the framework of our model this means that one should
take � ¼ 0 if � ¼ 0, �I ¼ 0. Assuming homogeneity of
the chiral condensate (b ¼ 0), we then obtain from (18) the
following expression for the effective potential of the
initial NJL2 model in vacuum (� ¼ 0, � ¼ 0, �I ¼ 0)5:

V0ðMÞ ¼ M2

4G
� 2

�

Z 1

0
dp1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1 þM2

q
: (19)

Formally, the effective potential (19) is a UV-divergent
quantity. To renormalize V0ðMÞ, i.e. to obtain a finite
expression for it, we first need to regularize the integral
in the right-hand side of (19) by cutting off its integration
region, p1 <�. Second, we suppose that the bare coupling
constantG in (19) depends on the cutoff parameter� (G �
Gð�Þ) in such a way that in the limit � ! 1 one obtains a
finite expression. To construct the function Gð�Þ, let us
suppose that the stationarity equation @V0ðMÞ=@M ¼ 0 has
a nontrivial solutionM0. Then it is easy to obtain from this
equation the following expression for the bare coupling
constant Gð�Þ:

1

2Gð�Þ ¼ 2

�

Z �

0
dp1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

0 þ p2
1

q

¼ 2

�
ln

��þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

0 þ�2
q
M0

�
: (20)

Now, using (20) in the regularized expression (19) and
adding an unessential constant �2=�, one can find at
� ! 1:

V0ðMÞ � lim
�!1

�
M2

4Gð�Þ �
2

�

Z �

0
dp1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1 þM2

q
þ�2

�

�

¼ M2

2�

�
ln

�
M2

M2
0

�
� 1

�
: (21)

SinceM0 might be considered as a free model parameter, it
follows from (20) and (21) that the renormalization proce-
dure of theNJL2 model is accompanied by the dimensional
transmutation phenomenon. Indeed, in the initial unrenor-
malized expression (19) for V0ðMÞ the dimensionless cou-
pling constant G is present, whereas after renormalization
the effective potential (21) is characterized by a dimen-
sional free model parameterM0. Moreover, as is clear from
(21), the global minimum point of the effective potential

5In vacuum, the thermodynamic potential is usually called
effective potential.
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V0ðMÞ lies just at the point M ¼ M0, so in vacuum the
chiral SULð2Þ � SURð2Þ symmetry of the NJL2 model (1)
is always spontaneously broken and the quantityM0 might
be treated as dynamical quark mass (in vacuum).

Detailed information about the phase structure of the
NJL2 model (1) at � � 0, �I ¼ 0 can be found, e.g., in

[14]. So, at �>M0=
ffiffiffi
2

p
and �I ¼ 0 there is a massless

chirally symmetric phase with nonzero baryon density.

However, at �<M0=
ffiffiffi
2

p
and �I ¼ 0, chiral symmetry is

spontaneously broken down and quarks acquire a massM0.
In this phase baryon density is equal to zero.

B. Phase structure in the general case: � � 0, �I � 0

To find the phase portrait of the NJL2 model (1) in the
case of a homogeneous chiral condensate but for arbitrary
values of chemical potentials and at zero temperature, one
should start from the expression (18) with b ¼ 0. (Note
that, at �I � 0, the condensation of charged pions might
occur, so we need to take into account a nonzero value
of �.) Obviously, this expression is again UV-divergent, so
first of all it is necessary to regularize it. Using, as the most
simple regularization, a �-cutoff in the one-dimensional
momentum space, we have:

�regðM;b ¼ 0;�Þ ¼ M2 þ �2

4G
�

Z �

0

dp1

�
fEþ

� þ E�
� g

�
Z 1

0

dp1

�
fð�� Eþ

� Þ
ð�� Eþ
� Þ

þ ð�� E�
� Þ
ð�� E�

� Þg; (22)

where E�
� denotes the quantity E�

� (16) at b ¼ 0. Because
of the presence of 
-functions, the second integral in (22)
has a finite integration region, i.e. it is a proper integral that
does not need to be regularized. To obtain a finite (renor-
malized) expression �ðM;�Þ for the thermodynamic po-
tential, one should again perform in (22) the replacement
G ! Gð�Þ, the last quantity being given in (20), and then
let � tend to infinity (compare with (21)), i.e.

�ðM;�Þ ¼ lim
�!1

�
�regðM;b ¼ 0;�ÞjG!Gð�Þ þ�2

�

�
: (23)

Using the definition of the effective potential in vacuum
[see (21)], it is easy to obtain the following renormalization
invariant expression of the TDP (23):

�ðM;�Þ ¼ V0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ �2

p
Þ

�
Z 1

0

dp1

�
fEþ

� þ E�
� � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1 þM2 þ �2

q
g

�
Z 1

0

dp1

�
fð�� Eþ

� Þ
ð�� Eþ
� Þ

þ ð�� E�
� Þ
ð�� E�

� Þg; (24)

where the function V0ðxÞ is defined in (21). Moreover,
the second integral in (24) is proper [see also the

corresponding remark just after (22)], whereas the first
integral is convergent and defined as

Z 1

0
dp1½Eþ

� þE�
� �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1þM2þ�2

q
�

¼ lim
�!1

�Z �

0
dp1½Eþ

� þE�
� �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1þM2þ�2

q
�
�
: (25)

Thus, in the case of a homogeneous chiral condensate, the
TDP is given by (23) and (24) and the corresponding phase
structure, following from it, is depicted in Fig. 1. (For a
more detailed investigation of this TDP, see paper [24].) In
the figure, the phases denoted by 1 and 2 correspond to the
global minimum point (GMP) of the form (M ¼ 0, � ¼ 0)
and (M � 0, � ¼ 0), correspondingly. In the pion con-
densed phase (PC), the GMP of the TDP (24) has the form
(M ¼ 0, � ¼ M0), i.e. in this phase the isospin symmetry
UI3ð1Þ is broken spontaneously.6 It is easy to see that

throughout the PC phase the quark number density is equal
to zero, whereas the isospin density nI ¼ �@�=@�I is
equal to �=�.

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2 1.4

FIG. 1. The ð�; �Þ phase portrait of the model considered at
T ¼ 0 and � > 0 in the case of spatially homogeneous conden-
sates. Here � ¼ �I

2 , and M0 is the quark mass in the vacuum.

Number 1 denotes the symmetric phase with massless quarks,
number 2 denotes the normal quark matter phase with massive
quarks, and PC denotes the charged pion condensed phase.
The point � is the lowest point of the phase 2: �� � 0:68M0,
�� � 0:6M0.

6Note that our numerical investigations show that the TDP
(24) has no local minima of the form (M � 0, � � 0), i.e.
simultaneous dynamical quark mass generation and charged
pion condensation are incompatible in the framework of the
NJL2 model (1) at b ¼ 0. The same is valid for the simple two-
flavored NJL4 model in the mean-field approximation [10].
However, it is not excluded that there might be realized a mixed
phase with both nonzero gaps,M � 0 and � � 0, in models with
a more complicated four-fermion structure.
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IV. INHOMOGENEOUS CHIRAL
CONDENSATE, b � 0

To obtain the phase portrait of the initial NJL2 model in
this case (temperature T is zero), let us start from the most
general expression for the TDP (18). As previously, let us
first use the most simple momentum cutoff regularization
of this quantity,

�regðM;b;�Þ ¼ M2 þ �2

4G
�

Z �

0

dp1

�
fEþ

� þ E�
� g

�
Z 1

0

dp1

�
fð�� Eþ

� Þ
ð�� Eþ
� Þ

þ ð�� E�
� Þ
ð�� E�

� Þg; (26)

where the expressions for E�
� are presented in (16). The

corresponding renormalized expression for the TDP is
again defined by [compare with (23)]

�ðM;b;�Þ ¼ lim
�!1

�
�regðM;b;�ÞjG!Gð�Þ þ�2

�

�
; (27)

where Gð�Þ is given in (20), and reads

�ðM;b;�Þ ¼ V0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ�2

p
Þ � lim

�!1

�Z �

0

dp1

�
½Eþ

� þ E�
�

� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1 þM2 þ�2

q
�
�

�
Z 1

0

dp1

�
fð�� Eþ

� Þ
ð�� Eþ
� Þ

þ ð�� E�
� Þ
ð�� E�

� Þg: (28)

(Evidently, at b ¼ 0, this expression coincides with the
TDP �ðM;�Þ (24).) The global minimum point of the
function �ðM;b;�Þ (28) vs variables M, b and � should
render the phase structure of the model. However, two
circumstances prevent us from considering this quantity
as a genuine physical thermodynamic potential of the
system. The first is that the function (28) is not bounded
from below with respect to the variable b. Second, it is
intuitively clear that atM ¼ 0 the genuine thermodynamic
potential should not depend on the variable b, because
no observable quantity may depend on a wave vector if
the amplitude of the corresponding oscillations (wave) is
zero. However, the TDP defined by (28) atM ¼ 0 (see also
in [24]),

�ðM ¼ 0; b;�Þ ¼ V0ð�Þ � ðbþ �Þ2
�

þ 
ð�� �Þ
�

�
�
�2 ln

�
�þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 ��2
p
�

�

��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 ��2

q �
; (29)

retains an unphysical dependence on b. Clearly, the two
above-mentioned unphysical properties of the TDP (28)

are due to the term � ðbþ�Þ2
� in (29). Hence, the subtraction

of this term from the TDP (28) brings us to the quantity,
which might serve as a physically acceptable thermody-
namic potential of the system,

�physðM;b;�Þ ¼ �ðM;b;�Þ þ ðbþ �Þ2
�

� �2

�
: (30)

(We also add in the expression (30) a b-independent term,
��2=�, in order to reproduce at b ¼ 0 the TDP (24),
corresponding to a spatially homogeneous chiral conden-
sate.) The reason the expression for the TDP (30) does not
follow straightforwardly from the unrenormalized TDP
expression (18) lies in the usage of the symmetric momen-
tum cutoff regularized TDP (26). This means that, for each
energy E�

� , the integration in the first (regularized) integral

of (26) is performed over the same momentum interval
0<p1 <�. Correspondingly, in this case there is an
asymmetry in values of energies E�

� , which contribute to

�regðM;b;�Þ. Indeed, if p1 <�, then

E�
� <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þM2

p
� ðbþ �ÞÞ2 þ�2

q
;

i.e. for different quasiparticles there are allowed different
regions of their energy values. However, as discussed in the
recent papers [28,29], a more adequate regularization
scheme in the case of spatially inhomogeneous phases is
that one where there is an energy constraint which is the
same for all quasiparticles. So, dealing with spatial inho-
mogeneity, one can use, e.g., the Schwinger proper-time
regularization, dimensional regularization, etc. In particu-
lar, in the recent paper [31], the symmetric energy cutoff
regularization scheme was proposed in considering the
behavior of chiral density waves in the presence of an
external magnetic field in the framework of a four-
dimensional Nambu–Jona-Lasinio model. There, for each
quasiparticle the same (finite) interval of their energy
values was allowed to contribute to the regularized ther-
modynamic potential. As a result, a physically relevant
renormalized TDP without the above-mentioned short-
comings was obtained.
In this paper the slightly modified energy cutoff regu-

larization scheme of [31] is adopted. Namely, we require
that only energies with momenta p1, constrained by the
relations E�

� ðM ¼ 0;� ¼ 0Þ ¼ p1 � ðbþ �Þ<�, con-

tribute to the regularized thermodynamic potential. This
means that the term with energy Eþ

� (E�
� ) should be

integrated in the regularized expression for TDP over the
interval 0<p1 <�� ðbþ �Þ (0<p1 <�þ ðbþ �Þ).
(A similar regularization was used in studying the CDW
phase in a two-dimensional NJL model without isospin
chemical potential [17].) Consequently, we have the fol-
lowing regularized expression for the TDP (18):
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~�regðM;b;�Þ¼M2þ�2

4G
� 1

�

Z ��~�

0
dp1E

þ
�

� 1

�

Z �þ~�

0
dp1E

�
� �

Z 1

0

dp1

�
fð��Eþ

� Þ
�
ð��Eþ

� Þþð��E�
� Þ
ð��E�

� Þg; (31)

where ~� ¼ ðbþ �Þ. Replacing in this formula G by Gð�Þ
from (20) and adding an unessential constant ð�2 �
�2Þ=�, we obtain a physically ‘‘improved’’ renormalized

expression ~�ðM;b;�Þ for the TDP (18) when � ! 1,
which differs from the expression �ðM;b;�Þ in (28).
Comparing (26) and (31) one can easily find that

~�ðM;b;�Þ ��ðM;b;�Þ
¼ lim

�!1

�
1

�

Z �

��~�
dp1E

þ
� � 1

�

Z �þ~�

�
dp1E

�
�

�

¼ ðbþ �Þ2
�

� �2

�
: (32)

(To obtain the last expression in (32) one should take into
account that at � ! 1 the p1-values in both integrals are
much greater thanM,�, b,�,�I. In this case it is possible
to expand the quantities E�

� into power series of p1 and

then to integrate each term.) Comparing (30) and (32), we

see that ~�ðM;b;�Þ ¼ �physðM;b;�Þ, i.e. there exists a
regularization scheme,7 which in the case of the inhomo-
geneous chiral condensate (8) brings us to a physically
acceptable TDP �physðM;b;�Þ (30). Notice also that if
b ¼ 0 then �ðM;b;�Þ is equal to �physðM;b;�Þ. Hence,
in the case of homogeneous chiral condensates the two
above-considered regularization schemes are equivalent.
In contrast, in the inhomogeneous case the thermodynamic
potentials �ðM;b;�Þ and �physðM;b;�Þ differ by terms,
containing the dynamical quantity b. As a result, the
regularizations are not equivalent. However, since the
symmetric momentum cutoff regularization is easier to
handle, it is possible to perform all calculations in the
framework of that regularization scheme and then simply

correct the obtained TDP�ðM;b;�Þ by the terms ðbþ�Þ2
� �

�2

� [see (30)], instead of using from the beginning one of the

physically acceptable regularizations bringing us directly
to the TDP �physðM;b;�Þ.

To illustrate the fact that the TDP �physðM;b;�Þ is
bounded from below as a function of the variable b, we
plot in Fig. 2 this thermodynamic potential vs M, b in the
particular case �I ¼ 0, � ¼ 0, � ¼ M0.

A. Particular case: �I ¼ 0, � � 0

Recall that the CDW inhomogeneous phase was estab-
lished earlier in theNJL2 model withULð1Þ �URð1Þ chiral
symmetry for all�> 0 at rather low temperatures [17,18].
In contrast, in this paper we are going to study chiral
density waves in the NJL2 model with a continuous chiral
SULð2Þ � SURð2Þ symmetry. In the present section we
consider the case of T ¼ 0. It is well-known that at
�I ¼ 0 the charged pion condensation phenomenon is
forbidden (see, e.g., [24]), so without loss of generality
one may suppose that � ¼ 0 in (28). Then the TDP
�ðM;b;� ¼ 0Þ can be easily evaluated analytically (see
[24]) and the physical thermodynamic potential
�physðM;bÞ � �physðM;b;� ¼ 0Þ (30) looks like

�physðM;bÞ¼V0ðMÞþ
ð�þb�MÞ
2�

�
�
M2 ln

�
�þbþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�þbÞ2�M2

p
M

�

�ð�þbÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�þbÞ2�M2

q �
þ
ðj��bj�MÞ

2�

�
�
M2 ln

�j��bjþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið��bÞ2�M2
p
M

�

�j��bj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð��bÞ2�M2

q �
þb2

�
: (33)

Recall that in (33) the constraints � � 0, b � 0, M � 0
are supposed. The phase structure of the model in this
particular case is defined by the properties of the global
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FIG. 2. The plot of �phys (30) vs M, b at �I ¼ 0, � ¼ M0,
� ¼ 0.

7Moreover, we expect that any regularization scheme, in
which there is a constraint on the energy values common for
all quasiparticles, should provide us with TDP �physðM; b;�Þ
(30). Among these regularizations are dimensional and analyti-
cal ones, Pauli-Villars and Schwinger prope-time regulariza-
tions, as well as the above-mentioned symmetric energy cutoff
regularization [31]. In particular, the proper-time regularization
is often used in studying inhomogeneous phases in the frame-
work of NJL models [28,29] and does not lead to any unphysical
effects, etc.
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minimum point (GMP) of the TDP (33), which certainly
depend on the values of�. The stationarity (gap) equations
of this TDP, i.e. the equations @�physðM;bÞ=@M ¼ 0 and
@�physðM;bÞ=@b ¼ 0, read:

M

8<
:ln

�
M2

M2
0

�
þ
ð�þb�MÞln

�
�þbþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�þbÞ2�M2

p
M

�

þ
ðj��bj�MÞln
�j��bjþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið��bÞ2�M2

p
M

�9=
;¼0;

(34)

2b¼
ð�þb�MÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�þbÞ2�M2

q

þsignðb��Þ
ðjb��j�MÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb��Þ2�M2

q
: (35)

Numerical investigations of the TDP (33) and of the gap
equations (34) and (35) show that in the NJL2 model with
chiral SULð2Þ � SURð2Þ symmetry the inhomogeneous
CDW phase is realized only at �>�c � 0:68M0. In
contrast, at T ¼ 0, in the (1þ 1)-dimensional ULð1Þ �
URð1Þ chirally symmetric model, the CDW phase appears
at arbitrary nonzero values of � [17,18]. Note that the
critical value �c is equal to �� which corresponds to the
lowest point of the homogeneous phase 2 (see Fig. 1).
Below the critical chemical potential, i.e. at �<�c, the
usual homogeneous phase is arranged, where chiral sym-
metry is broken down to the diagonal SUð2Þ subgroup. The
behavior of the chiral density wave amplitudeMð�Þ and its
wave vector b0ð�Þ, which are the coordinates of the global
minimum point of the TDP (33), is shown in Fig. 3 for
�I ¼ 0. It follows from this figure that at the critical point

�c a first order phase transition takes place, since here the
order parameter M changes its value by a jump. Since in
the CDW phase the relationMð�Þ< b0ð�Þ<� is valid, it
is clear from the dispersion laws (17) at � ¼ 0 that
u-quarks are gapless excitations of this phase. It means
that for each �>�c there exists a momentum p1ð�Þ at
which the quasiparticle energy p0u is equal to zero, i.e.
there is no energy cost to create u-quarks in the system.
In contrast, for the energy of d-quarks we have throughout
the CDW phase the relation p0d > p0min ¼ Mð�Þ þ
b0ð�Þ �� � Mð�Þ, i.e. there is a gap in the energy spec-
trum of d-quarks which are called, for this reason, gapped
excitations of the CDW phase. There is one more pecu-
liarity of the CDW phase. Indeed, as is easily seen from
(33), at � ¼ 0 the effective quark number chemical poten-
tial of u-quarks is equal to �þ b, whereas for d-quarks
it is �� b. Hence, there is a splitting of Fermi surfaces
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FIG. 3. The CDW amplitude Mð�Þ and its wave vector b0ð�Þ
as functions of � in the case of zero isospin chemical potential.
Here, �c ¼ �� � 0:68M0.
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FIG. 4. The plot of �phys (33) vs M, b at � ¼ M0.
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FIG. 5. Section of the plot of �phys (33) vs b at � ¼ M0 along
the axis b passing through the point of minimum.
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of up/down quarks by 2b0ð�Þ in the CDW phase even at
zero �I.

The fact that at � ¼ M0 the TDP (33) has a nontrivial
minimum at the point (M � 0:25M0, b � 0:99M0) is well-
supported by Figs. 4–6, where the plot of the function
�physðM;bÞ of M and b and its sections along axes b and
M are presented. (Note that in order to draw the figures we
continue the function (33) symmetrically onto the negative
semiaxis b.)

The influence of nonzero temperature on the formation
of CDWs in the case �I ¼ 0 is considered, in particular,
in Sec. V. (See Fig. 8.)

B. General case: �I � 0, � � 0

It is clear that to find the complete phase portrait of the
model in terms of the external chemical potential parame-
ters � � �I=2 and � (at T ¼ 0), one should investigate
the global minimum point (GMP) of the physical TDP
�physðM;b;�Þ (30) vs the dynamical variables M, b, �.8

However, in the case under consideration, the problem is
simplified due to the effective reduction of external pa-
rameters. Indeed, the structure of �physðM;b;�Þ is such
that it can be considered as a function of three dynamical
variablesM, �, ~� � bþ �, and only one external parame-
ter �, i.e. �physðM;b;�Þ � FðM;�; ~�;�Þ. So, the search-
ing for the GMP of this function consists effectively of two
stages. First, one can find the extremum of this function
overM and � (taking into account the results of Sec. III B)
and then, as was done in Sec. IVA, one minimizes the
obtained expression over the variable ~�. Properties of the
found GMP supply the following phase structure.

If �>�� ¼ �c � 0:68M0, then for arbitrary values of
� we have found phases with spatially inhomogeneous
condensates, which are realized at least in the form of
chiral density waves or chiral spirals. The gap � is equal
to zero for these phases. The amplitude M of these CDWs
depends only on � and is equal to the quantity Mð�Þ (see
Fig. 3). However, the chiral density wave vector b depends
on both � and �, namely,

b ¼ b0ð�Þ � �; (36)

where the quantity b0ð�Þ is also presented in Fig. 3. In the
ð�;�Þ-plane (see Fig. 7), we divide this region into two
CDW phases. In the CDW1 region we have the wave
vector b > 0, i.e. here we have a clockwise twisted chiral
spiral. In contrast, in the CDW2 region, one obtains for
chiral density waves the counterclockwise twisted chiral
spirals, since here b < 0. For all points of the line L of
this figure, which is defined by the relation L ¼
fð�;�Þ: � ¼ b0ð�Þg, the wave vector b is equal to zero.
So, the points of the curve L correspond to the homoge-
neous phase, where only chiral symmetry is spontane-
ously broken down and the dynamical quark mass is equal
to the quantity Mð�Þ from Fig. 3. (Hence, on the line L,
the spatial translational invariance of the system remains
intact.) Note that the phase L is nothing else than the
residue of the homogeneous phase 2 of Fig. 1 if the
spatial inhomogeneity of chiral condensates is taken
into account. To underline this fact, we use in Fig. 7 the
notation ��, which corresponds to the minimum point �
of the homogeneous phase 2 of Fig. 1, for the critical
curve between the CDW and charged pion condensation
(PC) phases. However, �� coincides with the critical
value �c of the case �I ¼ 0 (see Sec. IVA).
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FIG. 6. Section of the plot of�phys (33) vsM at� ¼ M0 along
the axis M passing through the point of minimum.
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FIG. 7. The ð�;�Þ phase portrait of the model at T ¼ 0 when a
spatial CDW inhomogeneity is taken into account. In the CDW1

(CDW2) phase, b > 0 (b < 0). The curve L, on which b ¼ 0,
corresponds to the homogeneous chiral symmetry broken phase.
The same is true for the interval 0<�<�� of the �-axis,
where �� ¼ �c � 0:68M0.

8As in the case with b ¼ 0, in the inhomogeneous case
we did not find local minima of the TDP (30) of the form
(M � 0, � � 0).
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As in the particular case with �I ¼ 0 (see the previous
section), u-quarks are gapless excitations and d-quarks are
gapped ones of the CDW1;2 phases at �I � 0. The same is

true for the homogeneous phase L.
Below the line � ¼ �� of Fig. 7 the homogeneous PC

phase is arranged, since for all points of this region the
GMP of the TDP (30) has the form M ¼ 0, � ¼ M0,
b ¼ 0. In this phase the isospin UI3ð1Þ symmetry of the

model is broken spontaneously. The exception is the inter-
val 0<�<�� of the �-axis, where chiral symmetry is
broken down and quarks have the mass M0.

Note that, for both the case of spatially homogeneous and
the case of inhomogeneous chiral condensate, the isospin
density nI in the PC phase is equal to �=�. Starting from the
�physðM;b;�Þ (30), it is possible to find the expression of
this TDP in the CDW1;2 phases [it is simply the expression

(33) shifted by (� �2=�), in whichM, b should be replaced
by Mð�Þ, b0ð�Þ, correspondingly] and then to calculate
their isospin density nI ¼ �@�phys=@�I. It turns out that
in the CDW phases the isospin density is the same as in the
PC phase, i.e. nI ¼ �=�. Hence, as is easily seen from (36),
at fixed values of � the wave vector of chiral spirals is
tightly (linearly) connected with isospin density. In con-
trast, in theULð1Þ �URð1Þ symmetricNJL2 model without
isospin chemical potential �I, the wave vector b shifts
effectively the quark number chemical potential �
[17,18]. For this reason, the quark number density nq is

equal to �=� in the CDW phase of this model. Moreover,
the wave vector b in this phase is proportional to nq.

V. CDW PHASES AT NONZERO TEMPERATURES

In the case of spatially homogeneous condensates the
influence of nonzero temperature on the phase structure of
the SULð2Þ � SURð2Þ symmetric NJL2 model (1)with two
chemical potentials � and � � �I=2 was considered in
[24]. Now let us study the influence of temperature T on
the phase structure of this model in the case of an inho-
mogeneous chiral condensate of the form (8). In this case,
to get the corresponding (unrenormalized) thermodynamic
potential �TðM;b;�Þ, one can simply start from the ex-
pression for the TDP at zero temperature (15) and perform
the following standard replacements:

Z 1

�1
dp0

2�
ð	 	 	Þ ! iT

X1
n¼�1

ð	 	 	Þ;

p0 ! p0n � i!n � i�Tð2nþ 1Þ;
n ¼ 0;�1;�2; . . . ;

(37)

i.e. the p0-integration should be replaced by the summation
over an infinite set of Matsubara frequencies!n. Summing
over Matsubara frequencies in the obtained expression (the
corresponding technique is presented, e.g. in [35]), one can
find for the TDP:

�TðM;b;�Þ¼M2þ�2

4G
�
Z 1

�1
dp1

2�
fEþ

�þE�
�

þT ln½1þe��ðEþ
�
��Þ�þT ln½1þe��ðEþ

�
þ�Þ�

þT ln½1þe��ðE�
�
��Þ�þT ln½1þe��ðE�

�
þ�Þ�g;
(38)

where � ¼ 1=T and E�
� are given in (16). Clearly, only the

first two terms in the braces of this expression (which are
the same as in the zero temperature case) are responsible
for an ultraviolet divergency of the whole TDP (38).
So, regularizing the TDP (38) in the way it was done in
(31) for zero temperature TDP and then replacing G !
Gð�Þ [see formula (20)], we can obtain in the limit� ! 1
a finite expression denoted as �phys

T ðM;b;�Þ. It is an
evident generalization of the TDP �physðM;b;�Þ (30) to
the case of nonzero temperature. Numerical investigations
show that all possible local minima of the obtained TDP

�phys
T ðM;b;�Þ are located in the planes M ¼ 0 or � ¼ 0.

So it is sufficient to deal with corresponding restrictions
of the TDP on these planes, i.e. with the following
functions:

�phys
T ðM¼0;b;�Þ
¼V0ð�Þ�2T

�

Z 1

0
dp1 lnf½1þe��ðE��Þ�½1þe��ðEþ�Þ�g;

(39)

�phys
T ðM;b;� ¼ 0Þ ¼ V0ðMÞ � ð�þ bÞ2

�
� T

�

Z 1

0
dp1 lnf½1þ e��ðEþ�þb��Þ�½1þ e��ðEþ�þbþ�Þ�g

� T

�

Z 1

0
dp1 lnf½1þ e��ðE���b��Þ�½1þ e��ðE���bþ�Þ�g; (40)

where the effective potential V0ðxÞ is given in (21), E ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1 þM2

q
, and E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1 þ �2

q
. Comparing the global

minima of the functions (39) and (40), it is possible to
establish the global minimum point of the renormalized

TDP �
phys
T ðM;b;�Þ. Then, the dependence of the global

minimum point vs T,�, � defines the phase structure of the
model.
Using this prescription in our numerical investigations of

the TDPs (39) and (40), we have found the two ð�; TÞ-phase
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portraits of the initial NJL2 model (1) depicted in Figs. 8
and 9 for qualitatively different fixed values of the isospin
chemical potentials, 0 
 �I < 2�� and 2�� < �I, respec-
tively. (�� � 0:6M0 is the �-coordinate of the point � of
Fig. 1.) Note, there is a first order phase transition on the
boundaries between CDW1;2 and homogeneous PC or chi-

ral symmetry breaking phases of these figures. However,
other boundaries of the phases of Figs. 8 and 9 correspond

to critical curves of the second order. It is interesting to
remark that, for 0< �< �� (�� < �), all critical curves of
Fig. 8 (Fig. 9) do not depend on �.
Finally, let us take �I ¼ 0 and compare the thermody-

namical properties of our (1þ 1)-dimensional NJL model
(1) (see the phase portrait of Fig. 8 at � ¼ 0) with the
corresponding massless (3þ 1)-dimensional NJL model
with chiral SULð2Þ � SURð2Þ symmetry [29]. It turns out
that, in the four-dimensional spacetime, in contrast to the
(1þ 1)-dimensional case, a second order phase transition
from a homogeneous chirally broken phase to an inhomo-
geneous one takes place. Moreover, depending on the value
of the dynamical quark mass in vacuum, the inhomoge-
neous phase in the (3þ 1)-dimensional NJL model may
occupy both a finite (compact) and infinite (noncompact)
region of the ð�; TÞ-phase diagram, whereas in our two-
dimensional NJL model (1) an inhomogeneous phase ap-
pears as a noncompact region (see Fig. 8).

VI. CONCLUSIONS

It is well-known that at nonzero baryon densities there
might exist phases with a spatially inhomogeneous chiral
condensate. This fact was established in the framework of
both two-dimensional GN- or NJL-type models [17,18,26]
and four-dimensional NJL-type models [27–31], where
phases with a crystalline chiral condensate or with a
CDW spatial inhomogeneity were proved to exist at non-
zero values of the baryon chemical potential. Since the
isotopic asymmetry of dense quark matter is an inevitable
reality, a more adequate investigation of dense quark mat-
ter demands to include consideration of both baryon, �,
and isospin, �I, chemical potentials. In this paper and in
contrast to previous papers [17,18,26], we study the pos-
sibility of spatially inhomogeneous chiral condensates in
the SULð2Þ � SURð2Þ symmetricNJL2 model (1) including
the two above-mentioned chemical potentials in the lead-
ing order of the large-Nc expansion. For simplicity, the
spatial inhomogeneity in our consideration is realized in
the form of so-called chiral density waves or chiral spirals.
First, we have proven that at �I ¼ 0 and T ¼ 0 the

inhomogeneous CDW phase is realized in this SULð2Þ �
SURð2Þ symmetric NJL2 model only at sufficiently large
values of �, i.e. at �>�c � 0:68M0. (Here, M0 is the
dynamical quark mass in the vacuum, i.e. at zero values of
chemical potentials.) In contrast, it is well-known that in
the NJL2 model with continuous ULð1Þ �URð1Þ chiral
symmetry the CDW phase appears at arbitrary nonzero
values of �> 0 [17,18]. Moreover, it turns out that at
�I ¼ 0 the Fermi surfaces of up/down quarks in the
CDW phase are split by 2b0ð�Þ, where b0ð�Þ is the wave
vector in this phase.
Second, if �I � 0 and T ¼ 0, then in the ð�I;�Þ

phase diagram (see Fig. 7) the spatially inhomogeneous
phases are allowed at �>�� ¼ �c and arbitrary values
of �I. This region is divided by the curve L into two

0
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0.2

0.3

0.4

0.5

0.6

0.2 0.4 0.6 0.8 1 1.2 1.4

FIG. 8. The ð�; TÞ phase portrait of the model at fixed �, where
0 
 � < �� � 0:6M0. There, at � ¼ 0, H denotes the homoge-
neous chiral symmetry breaking phase with M ¼ M0, b ¼ 0,
� ¼ 0. At 0< �< �� H denotes the homogeneous charged pion
condensation phase (PC) with M ¼ 0, b ¼ 0, � ¼ M0. �c ¼
�� � 0:68M0. In the symmetric phase M ¼ 0, b ¼ 0, � ¼ 0.
CDW1 denotes an inhomogeneous chiral density wave phase
with b > 0. All critical curves do not depend on �.
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FIG. 9. The ð�; TÞ phase portrait at fixed �, where �� < �.
Here, b�1

0 ð�Þ is the function inverse to b0ð�Þ defined in Fig. 3.

PC denotes the homogeneous charged pion condensation phase
with M ¼ 0, b ¼ 0, � ¼ M0. CDW2 denotes the inhomogene-
ous chiral density wave phase with b < 0. All critical curves do
not depend on �. Other notations are the same as in the previous
figures.
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domains. In one of them, each CDW is a clockwise
twisted chiral spiral; in the other, it is a counterclockwise
twisted spiral. The amplitude of chiral density waves
does not depend on �I. The dependence of its wave
vector b on � and �I is defined by the formula (36).
Since the isospin density nI in these phases is equal to
�=�, we see that the wave vector b is linearly connected
with nI. In contrast, in the ULð1Þ �URð1Þ-symmetric
NJL2 model, the wave vector of the CDW phase is
proportional to a quark number density [17,18]. The
points of the curve L correspond to the spatially homo-
geneous phase (since here b ¼ 0) with spontaneous
chiral symmetry breaking. Indeed, the phase L is the
residue of the homogeneous massive chirally nonsym-
metric phase 2 of Fig. 1 which shrinks to L after taking
into account inhomogeneity phenomena. Below the line
� ¼ ��, the homogeneous charged pion condensation
phase is realized.

It turns out that at arbitrary �I-values in all above-
mentioned inhomogeneous CDW phases as well as in the
L phase, u-quarks are gapless excitations, but d-quarks are
gapped ones.

Third, we have studied the influence of temperature on
the formation of the CDW phases. In particular, it was

shown that at �I ¼ 0 the ð�; TÞ-phase diagrams of the
SULð2Þ � SURð2Þ and ULð1Þ �URð1Þ symmetric NJL2

models are quite different. Indeed, as was proved in [18],
in the second model the CDW phase occupies in this
diagram an infinite strip which includes points with arbi-
trary small� values, whereas in the first model (see Fig. 8)
the upper boundary of this phase is a monotonically de-
creasing function of �. In addition, for rather small values
of � the CDW phase is forbidden in the framework of the
SULð2Þ � SURð2Þ symmetric NJL2 model.
We finally note that in this paper we have suggested a

homogeneous pion condensate. It would be interesting in
future to study the possibility of the spatially inhomoge-
neous pion condensation phase.
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