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Abstract.

In the paper there have been studied Gross-Neveu model in (2+1)-dimensional space-time

with one compactified dimension in presence of external magnetic field at finite tempera-

ture. Magnetic field is directed along the uncompactified dimension that is along the axis

of the cylinder on which the system lives. Chiral symmetry breaking and corresponding

phase structure of the model is investigated in the leading order of 1
N

expansion.

1 Introduction

Gross-Neveu model in the background of curved space-time and in space-time of nontrivial topology

was considered in a range of papers ([3–5, 9, 10]). One simple example of such spaces with nontrivial

topology is Rd × S 1 × · · · × S 1 space-time. Such space-times are used in models with compactified

extra dimensions.

By studying models in the simplest space-time with nontrivial topology you hope to make gener-

alization and predict properties of the models in spaces with more complicated structure .

Let us consider a very simple example, this is very important for the considered model. Let us

show that in case of space-time Md × S 1 constant vector potential along compactified dimension can

not be gauged away. Assume that

Aμ = 0 for μ = 1, . . . , d, Ad+1 = const.

Gauge transformations have the form :

ψ→ eieαψ, (1)

Aμ → Aμ − ∂μα.
Due to the fact that boundary condition is imposed on ψ ψ(x1, ..., xd, xd+1 +L) = ψ(x1, ..., xd, xd+1),

α satisfies the following condition :

α(x1, ..., xd, xd+1 + L) = α(x1, ..., xd, xd+1) + 2πen, (2)
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where L- length of compactified dimension.

This condition is satisfied if α(x) = 2πn x
L

.

Transformation for Ad+1 has the form

Ad+1 → Ad+1 −
2πen

L
. (3)

Hence in general Ad+1 can not be gauged away.

In this paper we consider Gross-Neveu model in R2 × S 1 space-time in presence of external mag-

netic field directed along uncompactified dimension at finite temperature and chemical potential.

2 Model and its thermodynamic potential

Consider Gross-Neveu model in R2 × S 1 space time (one spatial dimension is compactified), it means

that our system lives on the cylinder (there are two spatial dimensions, one uncompactified and one

compactified).

Let us think that the cylinder is embeded in (3+1)-dimensional Minkowski space-time, in which

there is homogeneous magnetic field directed along the axis of the cylinder.

On the surface of the cylinder vector potential has only one constant component along compacti-

fied dimension. As was shown in the introduction it can not be gauged away, that is there exists non

zero magnetic flux through the cylinder (along the axis of the cylinder). Moreover we assume that

magnetic field interacts with the spin of the fermions, which is introduced as an additional index of

the spinor field ψ. Note, that the spin introduced in such a way does not have any relation to Lorentz

group.

Lagrangian that describes this model has the following form:

L = ψ̄siγμDμψ
s
+

G

2N
(ψ̄sψs)2

+ μψ̄sγ0ψs
+
σs

2
gμBBψ̄sγ0ψs, (4)

γ-matrices have the following form:

γ0
= σ3, γ1

= iσ1, γ2
= iσ2. (5)

In this paper we will work in irreducible representation. In such models one often uses reducible

representation in which you can define γ5 matrix. Generalization to that case is obvious. Flavour

index of ψ is implied that runs from 1 to N.

Spin index s has two components 1 and 2.

Interaction of the magnetic field B with the spin is introduced by the last term in the Lagrangian

where σ1,2 = ±1, μB - Bohr magneton and B - magnetic field.

μ - chemical potential, G - coupling constant, covariant derivative Dμ : Dμ = ∂μ − ieAμ.

Vector potential Aμ has the following components: A0 = 0 , A1 = 0 , A2 = const. Since one

dimension is compactified we have to impose a boundary condition. For ψ the boundary condition:

ψ(x0, x1, x2
+ L) = e2πiαψ(x0, x1, x2). (6)

The model has U(N) flavour symmetry.

Moreover the Lagrangian is invariant with respect to discrete chiral transformation which has the

form:

ψ′L(x0, x1, x2) = ±ψL(x0, x1,−x2), ψ̄′L(x0, x1, x2) = ±ψ̄L(x0, x1,−x2), (7)

ψ̄′R(x0, x1, x2) = ∓ψ̄R(x0, x1−, x2), ψ̄′R(x0, x1, x2) = ∓ψ̄R(x0, x1,−x2),
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where ψR,L(x) =
1±iγ2

2
ψ(x), ψ̄R,L(x) = ψ̄(x)

1∓iγ2

2
.

We can work in reducible representation and define chiral symmetry using γ5 matrix but as we

pointed out before this changes nothing only there will be additional degrees of freedom and by

slightly changing the definition of the parameter g we have doubled thermodynamic potential. It is

obvious that it’s imposable to define chiral symmetry using γ5 matrix in irreducible representation for

there is no γ5 matrix. One can see that the term with the chemical potential has the same form as the

term describing interaction of magnetic field with the spin thus one can combine them and write the

Lagrangian in the following form:

L = ψ̄siγ0∂0ψ
s
+ ψ̄siγ1∂1ψ

s
+ ψ̄siγ2(∂2 − ieA2)ψs

+
G

2N
(ψ̄sψs)2

+ μsψ̄sγ0ψs, (8)

where we introduced two chemical potentials corresponding to particles with spin projection plus one

half and minus one half μ↑↓ = μ ± δμ , δμ = 1
2
gμBB.

Let us introduce auxiliary scalar field σ(x)

L = ψ̄siγ0∂0ψ
s
+ ψ̄siγ1∂1ψ

s
+ ψ̄siγ2(∂2 − ieA2)ψs − ψ̄sσψs − N

2G
σ2

+ μsψ̄sγ0ψs. (9)

Lagrangian (9) is equivalent to the Lagrangian (8), one can make sure of this using an equation of

motion for the scalar field σ, which has the following form

σ = −N

G
ψ̄sψs.

Let us take the functional integral over the fermion field and obtain the expression for the effective

action. As a result we obtain for effective action in the leading order of in 1
N

-expansion.

Seff = −i ln

∫
D[ψ̄(x)]D[ψ(x)]ei

∫
d3 x(ψ̄(iγ0(∂0+μs)+iγ1∂1+iγ2(∂2−ieA2)−σ)ψ− N

2G
σ2)

= (10)

= −
∫

d3x
N

2G
σ2 − i ln det

(
iγ0(∂0 + μs) + iγ1∂1 + iγ2(∂2 − ieA2) − σ

)
. (11)

Let us introduce thermodynamic potential that is defined by Veff = − Seff∫
d3 x
.

Calculating determinant over spinor indices and using the formula ln det = tr ln, we obtain

Veff =
N

2G
σ2

+ i
N

L

∑
s=1,2

∞∑
n=−∞

∫
d2 p

(2π)2
ln

(
(p0 + μs)

2 − p2
1 − (

2π

L
(n + α) − eA2)2 − σ2

)
(12)

It is convenient to introduce Aharonov-Bohm phase φ,: φ = eLA2

2π
=

eπL2B
8π

.

In the term ( 2π
L

(n + α) − eA2) = 2π
L

(n + α − eLA2

2π
) = 2π

L
(n + α − φ) we denote α − φ as α, for both

the phase in the boundary condition and Aharonov-Bohm phase contribute in α.

Performing Wick rotation p0 → −ip0, we obtain

Veff =
N

2G
σ2 − N

L

∑
s=1,2

∞∑
n=−∞

∫
d2 p

(2π)2
ln

(
(p0 − iμs)

2
+ p2

1 + (
2π

L
)2(n + α)2

+ σ2

)
. (13)

In order to consider our theory at finite temperature we should make use of the following prescrip-

tion: ∫
dp0

2π
f (p0) → 1

β

∞∑
l=−∞

f (p0l), where p0l =
2π

β
(l +

1

2
),

1

β
= T. (14)
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We obtain for the thermodynamic potential the following expression:

Veff =
N

2G
σ2 − N

βL

∑
s

∞∑
l=−∞

∞∑
n=−∞

∫
dp1

2π
ln((

2π

β
(l +

1

2
) − iμs)

2
+ (

2π

L
)2(n + α)2

+ p2
1 + σ

2). (15)

3 Calculation of the thermodynamic potential

From now on we assume for simplicity that μ = 0, for in this case δμ plays the same role as μ. If we

want to obtain expression for both nonzero μ and δμ, we need to divide the contribution by chemical

potential placing before the sum 1
2
, then in the first part instead of chemical potential we should write

μ + δμ and in the second part μ − δμ.

Also we rewrite ln in a more convenient form making use of the fact that one can omit terms that

are independent of σ.

Veff =
N

2G
σ2 − 2N

βL

∞∑
l=−∞

∞∑
n=−∞

∫
dp1

2π
ln

⎛⎜⎜⎜⎜⎜⎜⎝1 + σ2

( 2π
β

(l + 1
2
) − iδμ)2 + ( 2π

L
)2(n + α)2 + p2

1

⎞⎟⎟⎟⎟⎟⎟⎠ . (16)

We can take the sum over l using the following formula:

∞∑
n=−∞

ln

(
1 +

b2

a2 + (n + α)2

)
= (17)

=

∫
dτ ln(1 +

b2

a2 + τ2
) + ln

1 − 2 cos(2πα)e−2π
√

a2+b2
+ e−4π

√
a2+b2

1 − 2 cos(2πα)e−2π
√

a2
+ e−4π

√
a2

.

As a result we get the following expression for the thermodynamic potential:

Veff = V0 + VL + VμT ,

where

V0 =
N

2G
σ2 − 2N

∫
d3 p

(2π)3
ln(p2

+ σ2)

- thermodynamic potential of Gross-Neveu model without any external conditions,

VL = −
2N

L

∫
d2 p

(2π)2
ln

1 − 2cos(2πα)e−L
√

p2+σ2
+ e−2L

√
p2+σ2

1 − 2cos(2πα)e−L
√

p2
+ e−2L

√
p2

- contribution to the thermodynamic potential due to compactification,

VμT = −2N

βL

∞∑
n=−∞

∫
dp1

2π

(
ln(1 + e−β

√
p2

1
+σ2

n+βδμ) + ln(1 + e−β
√

p2
1
+σ2

n−βδμ)

)
, (18)

where σn =

√
( 2π

L
)2(n + α)2 + σ2 - contribution to the thermodynamic potential due to temperature

and chemical potential.

The expression (18) in the case of nonzero μ can be rewritten in the form

VμT = − N

2βL

∞∑
n=−∞

∫
dp1

2π

(
ln(1 + e−βE+

↑ ) + ln(1 + e−βE+

↓ ) + ln(1 + e−βE−
↑ ) + ln(1 + e−βE−

↓ )
)
,
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where E±
s = Ep ± μs and Ep =

√
( 2π

L
)2(n + α)2 + p2

1
+ σ2.

For V0 we have

V0(σ) =
N

3π
σ3

+
N

2g
σ2. (19)

Rewrite the expression for VL with use of special functions.

VL =
N

πL3
Li3(e−Lσ+2πiα) +

N

πL3
Li3(e−Lσ−2πiα) +

Nσ

πL2
Li2(e−Lσ+2πiα)+ (20)

+
Nσ

πL2
Li2(e−Lσ−2πiα) − N

πL3
Li3(e2πiα) − N

πL3
Li3(e−2πiα).

where Liν(z) =
∑∞

n=1
zn

nν
.

Derivative of Veff with respect to σ has the following form:

dVeff

dσ
=

N

π
σ

(
(σ − σ0) +

1

L
ln(1 − 2 cos(2πα)e−Lσ

+ e−2Lσ)

)
+ (21)

+
2Nσ

L

∞∑
n=−∞

∫
dp1

2π

1

1 + e(β
√

p2
1
+σ2

n−βδμ)

1√
p2

1
+ σ2

n

+
2Nσ

L

∞∑
n=−∞

∫
dp1

2π

1

1 + e(β
√

p2
1
+σ2

n+βδμ)

1√
p2

1
+ σ2

n

.

One can see that σ = 0 is a solution of stationary equation. Besides if σ→ ∞ then Veff → ∞, so if at a

point σ = 0 the thermodynamic potential has its maximum then minimum is is located at σ � 0. if at a

point σ = 0 the thermodynamic potential has its minimum then in the absence of the other minimums

this minimum is the global one. If there are other minimums then one has to compare values of the

thermodynamic potential at these minimums and find the global one. It turns out that in the case of

zero chemical potential μ = 0 without of Zeeman interaction δμ = 0 there are no other minimums

and in order to find minimum of the thermodynamic potential it is enough to calculate only second

derivative of the thermodynamic potential at the point σ = 0.

Second derivative of the thermodynamic potential at the point σ = 0 is

d2Veff

dσ2

∣∣∣∣∣∣
σ=0

=
N

π

(
−σ0 +

1

L
ln(2 − 2 cos(2πα))

)
+ (22)

+
2N

L

∞∑
n=−∞

∫
dp1

2π

1

1 + e(β
√

p2
1
+(σ0

n)2−βδμ)

1√
p2

1
+ (σ0

n)2

+
2N

L

∞∑
n=−∞

∫
dp1

2π

1

1 + e(β
√

p2
1
+(σ0

n)2+βδμ)

1√
p2

1
+ (σ0

n)2

,

where σ0
n = σn |σ=0.

In the case if α tends to integer, α = n+ ε when ε→ 0, the first term has the following asymptotic
N
πL

ln(ε2).

Studying the behavior of other terms one can find that divergent part of second derivative of second

derivative of the thermodynamic potential at the point σ = 0 equals 0:

d2Veff

dσ2

∣∣∣∣∣∣
div

σ=0

=
N

πL
ln(ε2) − N

πL
ln(ε2) = 0.

5
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Let us consider the case T = 0 , i.e. β→ ∞
Second derivative of the thermodynamic potential at the point σ = 0 in this case has the form:

d2Veff

dσ2

∣∣∣∣∣∣
σ=0

=
N

π

(
−σ0 +

1

L
ln(2 − 2 cos(2πα))

)
+

2N

πL

∞∑
n=−∞

θ(μn − 1) ln

(
μn +

√
μ2

n − 1

)
, (23)

where μn =
δμ

2π
L
|n+α|

Let us consider the case without Zeeman interaction at zero temperature T = 0, δμ = 0. In this

case

dVeff

dσ
=

N

π
σ

(
σ − σ0 +

1

L
ln(1 − 2 cos(2πα)e−Lσ

+ e−2Lσ)

)
= 0. (24)

In this case one can find an explicit expression for σ:

σ =
1

L
arcch

(
eLσ0 + 2 cos(2πα)

2

)
. (25)

This expression has been obtained in the following papers [3],[4],[5] .

In the case B = 0 if 1
6
< α < 5

6
there exist L < Lc, when the symmetry of the model is restored,

where Lc - critical radius of compactification:

Lc =
1

σ0

ln(2 − 2 cos(2πα)). (26)

In he case of other α symmetry is broken for all L. It means that if α = 0 the symmetry is broken for

all L, in case of α =
1
2
: Lc =

2 ln 2
σ0

Let us rewrite the expression for integral
∫

dp1

2π
ln

(
1 + e−β

√
p2

1
+σn±βδμ

)
, that stand in the expression

of thermodynamic potential using special functions . If σn > δμ.

Make use of the formula that can be found in ([7]),

∫ ∞

a

xn+1(x2 − a2)β−1e−pxdx = (−1)n (2a)β+
1
2

2
√
π

Γ(β)
∂n

∂pn
[p

1
2
−βKβ+ 1

2
(ap)]. (27)

We obtain that

∫ ∞

−∞

dp1

2π
ln

(
1 + e−β

√
p2

1
+σ2

n±βδμ
)
=

1

π

∞∑
m=1

(−1)m−1 e±βδμm

m
σnK1(βσnm). (28)

As a result we get the following expression for VμT

VμT = − 2N

πβL

∑
σn<δμ

∫
dp1

2π
ln

(
1 + e−β

√
p2

1
+σ2

n+βδμ
)
+ (29)

+
2N

πβL

∑
σn>δμ

∞∑
m=1

(−1)mσn

m
K1(βσnm)eβδμm

+
2N

πβL

∞∑
n=−∞

∞∑
m=1

(−1)mσn

m
K1(βσnm)e−βδμm.

6
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4 Effective potential for which d2Veff

dσ2

∣∣∣∣
σ=0

is explicitly finite for all values of α

In this section we will get the expression for thermodynamic potential that has explicitly finite form

of its second derivative at the point σ = 0 for all values of α.

Let us go back to the expression (15). Now take the sum over n first . Making use of the formula

(17), we get

Veff = V0 + Vβμ0 + VLβμ, (30)

Vβμ0 = −
2N

β

∫
d2 p

(2π)2
ln

⎛⎜⎜⎜⎜⎜⎜⎝1 + 2ch (βδμ)) e−β
√

p2+σ2
+ e−2β

√
p2+σ2

1 + 2ch (βδμ)) e−β
√

p2
+ e−2β

√
p2

⎞⎟⎟⎟⎟⎟⎟⎠ , (31)

VLβμ = −
2N

βL

∞∑
n=−∞

∫ ∞

−∞

dp1

2π
ln

(
1 − 2cos (2πα) e−L

√
p2

1
+σ2

l +e−2L
√

p2
1
+σ2

l

)
, (32)

where σl =

√
( 2π
β

(l + 1
2
) − iδμ)2 + σ2.

After not complicated calculation the expression for thermodynamic potential can be brought to

the form

Veff(σ) =
N

π

(
σ3

3
− σ2σ0

2

)
+

∑
±

N

πβ3
Li3(−e−βσ±βδμ) +

∑
±

Nσ

πβ2
Li2(−e−βσ±βδμ)+ (33)

+
4N

βL

∞∑
n=1

∞∑
l=−∞

σl

n
K1(Lσln) cos(2παn).

The second and the third terms in the thermodynamic potential can be written in that form only if

σ > δμ.

Derivative of the thermodynamic potential is

dVeff

dσ
=

N

π
σ

(
(σ − σ0) +

1

β
ln(1 + 2 cosh(βδμ)e−βσ + e−2βσ)

)
− (34)

−4Nσ

β

∞∑
l=−∞

∞∑
n=1

K0(Lσln) cos(2παn).

Second derivative of the thermodynamic potential at the point σ = 0 is

d2Veff

dσ2

∣∣∣∣∣∣
σ=0

=
N

π

(
−σ0 +

1

β
ln(2 + 2 cosh(βδμ))

)
− (35)

−4N

β

∞∑
l=0

∞∑
n=1

(
K0(Lσ+0

l n) + K0(Lσ−0
l n)

)
cos(2παn),

where

σ±l =

√
(
2π

β
(l +

1

2
) ± iδμ)2 + σ2, σ±0

l = σ±l |σ=0 . (36)

Consider the limit L → ∞ (this case has been considered in [6]). One can see that in the expression

for first derivative of the thermodynamic potential (34) the last term tends to zero as O( 1
L

e−L). As a

result we get
dVeff

dσ
=

N

π
σ

(
(σ − σ0) +

1

β
ln(1 + 2 ch(βδμ)e−βσ + e−2βσ)

)
.
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One can easily solve this for σ

σ =
1

β
arcch

(
eβσ0 − 2 ch(βδμ)

2

)
.

In the case δμ < 1 (δμ is made dimensionless by σ0, i.e. δμ < σ0) there exists βc, such that if

β < βc the symmetry is restored.

βc can be found from the following equation:

eβσ0 = 2 + eβδμ + e−βδμ.

One can see that with increasing value of δμ the value of βc is increasing and tends to infinity if

δμ → 1. Starting from δμ = 1 critical temperature βc does not exist, that is the symmetry is always

restored for any values of β.

5 Numeric investigation and phase portrait

One can investigate the phase structure of the model and draw a full phase portrait of it only by

numerical analysis of thermodynamic potential that is finding its global minimum point.

Let us consider the case of zero chemical potential without Zeeman interaction. In that case

external magnetic field influence the system only via Aharonov-Bohm phase.

First consider the case for periodic boundary condition α = 0.

If B = 0 (Fig. 1) one can see that by decreasing β (that is increasing the temperature T) the

symmetry is restored. By increasing length of compactified dimension L the curve tends to a constant

value β = βc, βc = 2 ln 2 and this value is reached already at L equals 3.

Let us assume that external magnetic field is nonzero. By increasing B one can see that there appears

a bump (Fig.2), that is in corresponding region L the symmetry is restored for β > βc

At rather large B (approximately 220 − 226) the bump goes to infinity, one can see this at (Fig.3)

By further increasing B there appears one more bumps (Fig. 3, 4 ), etc.

One can observe that at B = 2073 (Fig. 5) two bumps go to infinity (though there are other bumps

at the figure that do not go to infinity). This means that for infinite values of β at some values of L

symmetry is restored, then it breaks down and then restores again by decreasing L.

At large values of B (Fig. 6 ) there are many bumps that go to infinity. One can see that all bumps

going to infinity do not go beyond values of L > Lc as in case of (T = 0). It means that magnetic field

virtually do not influence the curve of phase transition of the system for L > Lc.

Let us now consider the case of antiperiodic boundary condition α =
1
2
.

In tis case at zero magnetic field phase portrait of the system is symmetric under interchange of β

and L, a it should be according to (15) if B = 0, α =
1
2
.one can see that the curve if L → ∞ tends to

βc, and if β→ ∞ the curve tends to Lc (Fig.8).

If the magnetic field is nonzero B � 0, then if one increase B in order to restore chiral symmetry

one has to decrease length of compactified dimension L to lower value than in case of B = 0 (Fig. 7,

8). For large enough values of the magnetic field and large values of β (β > βc) there appears regions

of L, in which first the symmetry is restored, then by decreasing L it breaks down and then is restored

again, as it were in the case of periodic boundary condition. Values of L, at which the symmetry is

restored once for all, decrease by increasing values of magnetic field, and number of regions in which

the symmetry alternatively restores and breaks down becomes larger (Fig. 9, 10).

Comparing the phase portrait for zero magnetic field (Fig. 7) and for nonzero one (Fig.. 9, 10),

one can see that magnetic field could break the symmetry in the region L < Lc.
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At Fig. 1–6 curve of phase transition between phase σ = 0(left) and σ � 0 (right) is depicted for

periodic boundary condition (α = 0) without taking into account Zeeman interaction (δμ = 0) for

different values of magnetic field B.

Figure 1. α = 0, B = 0. Figure 2. α = 0, B = 207.

Figure 3. α = 0, B = 722. Figure 4. α = 0, B = 848.

Figure 5. α = 0, B = 2073. Figure 6. α = 0, B = 2198.
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At Fig. 7-10 curve of phase transition between phase σ = 0(left) and σ � 0 (right) is depicted for

antiperiodic boundary condition (α =
1
2
) without taking into account Zeeman interaction (δμ = 0) for

different values of magnetic field B.

Figure 7. α =
1
2
, B = 0. Figure 8. α =

1
2
, B = 816.

Figure 9. α =
1
2
, B = 2072. Figure 10. α =

1
2
, B = 3328.

6 Calculation of using method of ζ-regularization.

In this section we will obtain an expression for thermodynamic potential in case of R1×S 1×S 1 space-

time (the second S 1 implies that the model is considered at finite temperature), for arbitrary boundary

conditions on the spinor field ψ, that is for arbitrary α.We consider that there is external magnetic field

B, but we will not take into account Zeeman interaction δμ = 0, and consider case of zero chemical

potential μ = 0. We will make use of a method called ζ-regularization . This method was used in

paper [10] in order to investigate the influence of compactification and nonzero temperature on chiral

symmetry breaking in two dimensional Gross-Neveu model in case of α = 0, α =
1
2
. Moreover in this

paper there was formulated this method for Rd × S 1 × S 1 space time with arbitrary d.

Here this method is generalized for arbitrary α and equation for the phase portrait is obtained.

First we will obtain an asymptotic of thermodynamic potential at a point σ = 0 up to terms

quadratic over σ, that will allow us to get second derivative of the thermodynamic potential at the

point σ = 0 and determine if the point σ = 0 is local minimum or maximum. In case of δμ = 0
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thermodynamic potential always has only one minimum hence having the asymptotic at point σ = 0

allows us to determine if minimum of thermodynamic potential locates at point σ = 0 or at some

point σ � 0 that is if the chiral symmetry is broken or not. Then using method of ζ-regularization we

will obtain an expression for thermodynamic potential in two form. This expressions coincides with

those obtained using cut-off regularization.

First we will obtain asymptotic of thermodynamic potential at a point σ = 0. Let us go back to

the expression (15). For simplicity assume that μ = 0

Veff =
N

2G
σ2 − N

βL

∑
s

∑
l

∑
n

∫
dp1

2π
ln

⎛⎜⎜⎜⎜⎜⎝
(

2π

β

(
l +

1

2

)
− iδμ

)2

+

(
2π

L

)2

(n + α)2
+ p2

1 + σ
2

⎞⎟⎟⎟⎟⎟⎠ . (37)

Using the following relation ln a = −(a−s)′|s=0, we get

Veff =
N

2G
σ2

+ Ω
′(s)|s=0, (38)

where

Ω(s) =
2N

βL

∑
l

∑
n

∫
dp1

2π

⎛⎜⎜⎜⎜⎜⎜⎝ ( 2π
β

(l + 1
2
) − iδμ)2

+ ( 2π
L

)2(n + α)2
+ p2

1
+ σ2

μ2

⎞⎟⎟⎟⎟⎟⎟⎠
−s

(39)

and μ-dimensionful parameter with the dimension of mass.

Make use of the formula

a−s
=

1

Γ(s)

∫ ∞

0

dt ts−1e−at

and if
(
π
β

)2
+ σ2 > δμ2 we obtain

Ω(s) =
N

βL

∞∑
l=−∞

∞∑
n=−∞

∫ ∞

−∞

dp1

2π

1

Γ(s)

∫ ∞

0

dt ts−1e
−(( 2π

β
(l+ 1

2
)−iδμ)2

+( 2π
L

)2(n+α)2
+p2

1
+σ2) t

μ2 .

Calculating the Gaussian integral
∫ ∞
−∞

dp1

2π
e−p2

1
t
=

1

2
√
πt

, we get

Ω(s) =
N

βL
μ2s

∞∑
l=−∞

∞∑
n=−∞

1

2
√
π

1

Γ(s)

∫ ∞

0

dt ts− 3
2 e
−( 2π

β
)2((l+ 1

2
)− iβδμ

2π
)2t

e−( 2π
L

)2(n+α)2te−σ
2t.

Let us use Poisson resummation formula

∞∑
n=−∞

e−a(n+b)2

=

√
π

a

∞∑
n=−∞

e−
π2n2

a cos(2πbn), (40)

and transform the sum of exponents into the form

∞∑
n=−∞

e−( 2π
L

)2(n+α)2t
=

L

2
√
πt

⎛⎜⎜⎜⎜⎜⎝1 + 2

∞∑
n=1

e−
L2n2

4t cos(2παn)

⎞⎟⎟⎟⎟⎟⎠
and ∞∑

l=−∞
e
−( 2π

β
)2(l+ 1

2
− iβδμ

2π
)2t
=

β

2
√
πt

⎛⎜⎜⎜⎜⎜⎝1 + 2

∞∑
l=1

e−
β2 l2

4t (−1)l cosh(βδμl)

⎞⎟⎟⎟⎟⎟⎠ .

  
 

  
DOI: 10.1051/,126 12604057EPJ Web of Conferences epjconf/201604057 (2016)

ICNFP 2015

11



As a result for Ω(s) we obtain

Ω(s) =
N√
πβL

1

Γ(s)
μ2s

∫ ∞

0

dt ts− 3
2× (41)

× L

2
√
πt

⎛⎜⎜⎜⎜⎜⎝1 + 2

∞∑
n=1

e−
L2n2

4t cos(2παn)

⎞⎟⎟⎟⎟⎟⎠ β

2
√
πt

⎛⎜⎜⎜⎜⎜⎝1 + 2

∞∑
l=1

e−
β2 l2

4t (−1)l cosh(βδμl)

⎞⎟⎟⎟⎟⎟⎠ e−σ
2t.

Generalization to the case of δμ � 0 is not achieved and here we assume δμ = 0 and get:

Ω(s) =
N

4π
3
2

1

Γ(s)
μ2s

∫ ∞

0

dt ts− 5
2

⎛⎜⎜⎜⎜⎜⎝1 + 2

∞∑
n=1

e−
L2n2

4t cos(2παn)

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝1 + 2

∞∑
l=1

e−
β2 l2

4t (−1)l

⎞⎟⎟⎟⎟⎟⎠ e−σ
2t. (42)

There is the following relation, representation of exponent

e−A
=

1

2πi

∫
Re(z)=c>0

dzΓ(z)A−z,

where one has to integrate over a contour Re(z) = c > 0. From now on wee assume that integration is

over contour Re(z) = c > 3
2
.

Using this formula we could represent exponents as contour integrals and after not complicated

transformations we obtain

Ω(s) =
Nσ3

4π
3
2

(
μ

σ

)2s Γ(s − 3
2
)

Γ(s)
+ (43)

+
Nσ3

4π
3
2

1

Γ(s)

(
μ

σ

)2s 1

2πi

∫
dzΓ(z)Γ

(
z + s − 3

2

) ∑
(l,n)�(0,0)

(−1)l cos(2παn)

(β2l2 + L2n2)z

(
σ

2

)−2z

.

In order to get Veff , one has to take a derivative with respect to s at a point s = 0. In both terms

nonzero contribution is provided from deriving of Γ-function in denominator. We get a function

d

ds

(
1

Γ(s)

)∣∣∣∣∣∣
s=0

= − Γ
′(s)

Γ2(s)

∣∣∣∣∣∣
s=0

= −ψ(s)

Γ(s)

∣∣∣∣∣∣
s=0

= 1

ψ(s) =
Γ
′(s)

Γ(s)
.

ψ has poles of 1-st order at points s = −1,−2,−3, ... .

Ress=0(ψ(s)) = −1, for ψ(z + 1) = ψ(z) + 1
z
.

As a result the first term in (43) together with the first term in (38) give the following contribution

to thermodynamic potential:

N

2Gr

σ2
+

Nσ3

3π
,

where - Gr -renormalized coupling constant, subscript r we inserted after ζ-regularization of expres-

sion for thermodynamic potential. In reality it remains literally the same and equals the coupling

constant G.

Using the following notation 1
Gr

= −σ0

π
, one can see that the expression for thermodynamic poten-

tial in the case L = ∞, β = ∞, μ = 0, δμ = 0, B = 0 coincides with (19), when cut-off regularization

was used.
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Let us introduce a function Z

Z(a, b, α, s) =
∑

(l,n)�(0,0)

cos(2παn)

(a2l2 + b2n2)s
,

which in case of α = 0 is reduced to Epshtein Z-function

Z(a, b, s) =
∑

(n,m)�(0,0)

1

(a2n2 + b2m2)s
.

Let us write the relation which helps to bring the sum in the expression for Veff , to Z-function.

∑
(n,m)�(0,0)

(−1)n

(a2n2 + b2m2)s
= 2Z(2a, b, s) − Z(a, b, s), (44)

∑
(n,m)�(0,0)

(−1)n+m

(a2n2 + b2m2)s
= Z(a, b, s) − 2Z(2a, b, s) − 2Z(a, 2b, s) + 4Z(2a, 2b, s), (45)

∑
(l,n)�(0,0)

(−1)l cos(2παn)

(a2l2 + b2n2)s
= 2Z(2a, b, α, s) − Z(a, b, α, s). (46)

An integral in the expression (43) for Veff in the case of α = 0 with the help of formula (44), and

in the case of α =
1
2

with the help of formula (45), can be brought down to the integral of the form

I =
Nσ3

4π
3
2

1

2πi

∫
dzΓ(z)Γ

(
z − 3

2

)
Z(β, L, z)

(
σ

2

)−2z

.

It can be shown that a function Γ(z)Z(β, L, z)Γ
(
z − 3

2

)
has poles at points z = 3

2
− n, n = 0, 1... due to

Γ

(
z − 3

2

)
and at points z = 0, z = 1 due to Γ(z)Z(β, L, z).

The pole at z = 3
2

gives a result independent of σ, and can be omitted. The pole at z = 1 gives a

term proportional to σ. The pole at z = 1
2

gives a term proportional to σ2. Other poles gives higher

orders of σ.

Using the relation Γ(− 1
2
) = −2

√
π one can get

Z(β, L,
1

2
) =

8

β

∞∑
m=1

∞∑
n=1

K1(2π
L

β
nm) cos(2παm).

As a result

I = −N

2

1

βL
σ − 2Nσ2

πβ

∞∑
m=1

∞∑
n=1

K1(2π
L

β
nm) cos(2παm) + O(σ3).

The first term gives no contribution to thermodynamic potential (it can be seen from (44), (45)).

As a result for Veff in the case of α = 0 we get

Veff =
N

π
(
σ3

3
− σ2σ0

2
) +

2Nσ2

πβ

∞∑
m=1

∞∑
n=1

(K1(2π
L

β
nm) − K1(π

L

β
nm)) + O(σ3). (47)
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In the case of α =
1
2

Veff has the form

Veff =
N

π

(
σ3

3
− σ2σ0

2

)
+

2Nσ2

πβ

∞∑
m=1

∞∑
n=1

(2K1(4π
L

β
nm) − 2K1(2π

L

β
nm)+ (48)

+K1(π
L

β
nm) − K1(2π

L

β
nm)) + O(σ3).

For arbitrary value of α we get for thermodynamic potential

Veff =
N

π

(
σ3

3
− σ2σ0

2

)
+

2Nσ2

πβ

∞∑
m=1

∞∑
n=1

(K1(2π
L

β
nm) − K1(π

L

β
nm)) cos(2παm) + O(σ3). (49)

Now let us obtain expressions for thermodynamic potential in case of ν � 0, using method of

ζ-regularization. In order to do that let us go back to the expression (42)

Ω̃(s) =
N

4π
3
2

μ2s

Γ(s)

∫ ∞

0

dt ts− 5
2 e−σ

2t
+

N

2π
3
2

μ2s

Γ(s)

∫ ∞

0

dt ts− 5
2

∞∑
n=1

e−
L2n2

4t
−σ2t cos(2παn)+

+
N√
πβL

1

Γ(s)
μ2s

∫ ∞

0

dt ts− 3
2× (50)

× L

2
√
πt

⎛⎜⎜⎜⎜⎜⎝1 + 2

∞∑
n=1

e−
L2n2

4t cos(2παn)

⎞⎟⎟⎟⎟⎟⎠ β

2
√
πt

2

∞∑
l=1

e−
β2 l2

4t (−1)l ch(βνl)e−σ
2t.

In the third term of (50) we can use Poisson resummation formula backwards we get for thermo-

dynamic potential

Veff =
N

π

(
σ3

3
− σ2σ0

2

)
+

N

2π
3
2

∫ ∞

0

dt t−
5
2

∞∑
n=1

e−
L2n2

4t
−σ2t cos(2παn)+ (51)

+
N

πL

∫ ∞

0

dt t−2

∞∑
n=−∞

∞∑
l=1

e−
β2 l2

4t
−σ2

nt(−1)l ch(βνl).

Second term in the expression for Veff we can transform to

2N

πL3

∞∑
n=1

e−σLn

n3
cos(2παn) +

2Nσ

πL2

∞∑
n=1

e−σLn

n2
cos(2παn).

The third term in the expression for Veff can be transformed to

2N

πLβ

∑
σn>ν

∞∑
l=1

σn

l
K1(βσnl)(−1)leβνl +

2N

πLβ

∞∑
n=−∞

∞∑
l=1

σn

l
K1(βσnl)(−1)le−βνl+

+
N

2πL

∫ ∞

0

dt t−2
∑
σn<ν

∞∑
l=1

e−
β2 l2

4t
−σ2

nt(−1)leβνl.

One can see that for σ > ν expression for thermodynamic potential coincides with the expression

(29).
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Now let us obtain an expression for thermodynamic potential in another form. Again go back to

the expression (41), now apply Poisson resummation formula backwards to sum over l.

For thermodynamic potential we get

Veff =
N

π

(
σ3

3
− σ2σ0

2

)
+

N

2π
3
2

∫ ∞

0

dt t−
5
2

∞∑
l=1

e−
β2 l2

4t
−σ2t(−1)l ch(βνl)+ (52)

+
N

πL

∞∑
l=−∞

∞∑
n=1

∫ ∞

0

dt t−2e−
L2n2

4t
−σ2

l
t cos(2παn).

For σ > ν the second term can be transformed to

N

πβ3

(
Li3

(
−e−βl(σ+ν)

)
+ Li3

(
−e−βl(σ−ν))

+ βσ(Li2
(
−e−βl(σ+ν)

)
+ Li2

(
−e−βl(σ−ν)) ).

The third one can be transformed to

4Nσ

πβL

∞∑
l=−∞

∞∑
n=1

σl

n
K1(Lσln) cos(2παn).

One can see that this expression coincides with the expression (33).

7 Conclusions and some numerical estimation

There have been obtained expression for thermodynamic potential in two forms each is useful in

different situations.

In case of periodic (α = 0), if there is nonzero magnetic flux then it can restore the symmetry at

zero temperature. However, the symmetry can be restored only for not very large radius L < Lc.

In the case of antiperiodic boundary condition (α =
1
2
) phase portrait of the system is symmet-

ric in the plane of (L, β), that is compactification restores the symmetry of the model as increasing

of temperature (β is analogous to L). In some situation in this case magnetic field can break the

symmetry.

For all boundary condition when magnetic fields are large there is a region of L, where the sym-

metry can be restored and broken down several times by not so large changes of L.

Using method of ζ-regularization we obtained the expression for the thermodynamic potential and

its behavior at zero, which can be used in determining if zero is local minimum or local maximum of

the thermodynamic potential.

Let us do some numerical estimation.

One can see that magnetic field always stands in the expression Φ

Φ0
, where Φ- magnetic flux,

Φ0 =
2π
e

,

Φ = LA2 =
L2B
4π

. Magnetic flux contribute if at least Φ

Φ0
∼ 10−2. Assume that L ∼ 10−7cm.

Let us estimate magnetic field that correspond to such magnetic flux.

Φ

Φ0

=
eL2B

8π2
=

1

8π2

(
L

λc

)2
B

Bc

, (53)

where Bc =
m2

e
∼ 1013 G, λc =

1
m

-Compton wavelength. Restoring �, c, we write λc =
�

mc
∼ 10−13m.

Instead of speed of light c if we consider application to graphene we should take Fermi velocity

vF =
c

300
,and in the following estimation we should perform transformation L → vF L. Estimate for

the field is B ∼ 103 G=0.1 T.
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