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We report searches for the processes eþe− → πþπ−π0χbJ and eþe− → ϕχbJ (J ¼ 1, 2) based on data
samples collected by the Belle experiment at the KEKB collider. We report the first observation of the
process eþe− → ðπþπ−π0Þnon−ωχb1 and first evidence for eþe− → ωχbJ in the vicinity of the ϒð11020Þ
resonance, with center-of-mass energies from 10.96 to 11.05 GeV. The significances for ðπþπ−π0Þnon−ωχb1
and ωχbJ are greater than 5.3σ and 4.0σ, respectively. We also investigate the energy dependence of the
eþe− → πþπ−π0χbJ cross section, but we cannot determine whether the contributions are from the
ϒð10860Þ and ϒð11020Þ resonances or nonresonant continuum processes. The signals for eþe− → ϕχbJ
are not significant, and the upper limits of the Born cross sections at the 90% confidence level are 0.7 and
1.0 pb for eþe− → ϕχb1 and ϕχb2, respectively, for center-of-mass energies from 10.96 to 11.05 GeV.

DOI: 10.1103/PhysRevD.98.091102

Hadronic transitions among heavy quarkonium states
serve as a key source of information for better under-
standing the strong interaction between a quark and
antiquark, and thus quantum chromodynamics (QCD).
The heavy quarkonium systems, in which the speed of
quarks is sufficiently small, are approximately nonrelativ-
istic, and the hadronic transitions to lower lying states have
long been described using the QCD multipole expansion
[1]. However, the existence of anomalously large hadronic
transition rates from theϒð10860Þ, as reported by the Belle
experiment [2–9], challenges the theoretical calculations, as
well as the pure bottomonium nature of the ϒð10860Þ and
ϒð11020Þ [10–12].
The processes eþe− → ωχbJ were observed recently [4]

using data samples taken at energies near the ϒð10860Þ
peak, but the dependence of the eþe− → ωχbJ cross section
versus energy was not measured. Therefore, it is unclear
whether this process occurs from the ϒð10860Þ meson or
continuum process. Nevertheless, the result has been
investigated extensively by theorists to understand the
dynamics of these transitions, producing studies of S-
and D-wave mixing for the observed heavy quark spin-
symmetry violation from the comparison of ωχb1 and ωχb2
[13], a possible contribution of ϒð10860Þ → πZb →
πρϒð1SÞ [14], a molecular component in the ϒð10860Þ
wave function [14], and hadronic-loop effects [15].

By extending the calculation in Ref. [15] to the
ϒð11020Þ case, assuming the hadronic-loop effect is a
universal mechanism in the higher bottomonium transi-
tions, the authors of Ref. [16] predict the branching
fractions of ϒð11020Þ → ωχbJ in addition to ϒð11020Þ →
ϕχbJ, where J ¼ 0, 1, and 2, as listed in Table I. Relative
magnitudes of these branching fractions are also predicted
(and listed in Table I), which are weakly dependent on the
free parameters introduced in the theoretical calculation.
An experimental measurement of these ω and ϕ transitions
will give a crucial test on how well the hadronic-loop effect
works in ϒð11020Þ decay, and a test of the similarity
between ϒð11020Þ and ϒð10860Þ.
In this paper, we report the results of a search for ωχbJ

and ϕχbJ using the ϒð10860Þ and ϒð11020Þ energy scan
data collected with the Belle detector. The data that we are
using consist of 22 samples of high integrated luminosity
(listed in Table II), and 18 additional samples of about
50 pb−1 per point taken in 5 MeV steps between 10.96
and 11.05 GeV [17]. We use χbJ → γϒð1SÞ, ϒð1SÞ →
lþl−ðl ¼ e; μÞ, ω → πþπ−π0 to reconstruct the eþe− →
ωχb1;2 signal; for the eþe− → ϕχbJ signal, we reconstruct
ϕ with its decays to KþK− and check the production of
χbJ by studying the KþK− recoil mass.
The Belle detector, located at the KEKB asymmetric-

energy eþe− collider [18] is described in Ref. [19]. The
EVTGEN [20] generator, as well as a GEANT3 [21]-based
detector simulation, is used to produce simulated events
using Monte Carlo (MC) methods. The nominal parameters
of the states in the decay chains are quoted from Ref. [22].
To take the initial-state radiation (ISR) into consideration,
the radiator function from Ref. [23] is introduced in
EVTGEN. A generic MC sample at the ϒð10860Þ peak
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including all possible decays is used to study the possible
background channels and investigate the background
shape.
For charged tracks, the impact parameters perpendicular

to and along the beam direction with respect to the
interaction point are required to be less than 1.0 and
3.5 cm, respectively. The transverse momentum is
restricted to be higher than 0.1 GeV=c. A particle identi-
fication (PID) hypothesis [24] LðXÞ for each charged track
is formed from different detector subsystems for particle
X ∈ e; μ; π; K; p. Tracks with a likelihood ratio RðKÞ ¼
LðKÞ=ðLðKÞ þ LðπÞÞ < 0.4 are identified as pions while
those with RðKÞ > 0.6 are identified as kaons. Similarly,
we define the likelihood ratios RðeÞ and RðμÞ for
identification of electrons and muons, respectively, with
RðeÞ > 0.01 and RðμÞ > 0.1. A neutral cluster in the
electromagnetic calorimeter is reconstructed as a photon

if it does not match the extrapolated position of any charged
track and its energy is greater than 30 MeV.
To select eþe− → πþπ−π0χbJ candidates, we require that

there be exactly four tracks with zero net charge, of which
two are positively identified as pions and the other two as
leptons. At least three photons are required in the event, and
a π0 list is created with the invariant mass of the photon
pairs satisfying MðγγÞ ∈ ½0.12; 0.15� GeV=c2, which cov-
ers nearly �3σ around the π0 peak. To improve the track
momentum and photon energy resolutions, and to suppress
the background, a five-constraint (5C) kinematic fit is
performed for the γπþπ−π0lþl− candidates enforcing
energy and momentum conservation and constraining the
invariant mass of π0 candidates. The four momenta of the
final-state particles after the 5C kinematic fit are kept for
further analysis. The χ25C=ndf is required to be less than
20, where χ25C is the resulting χ2 of the kinematic fit, and
ndf ¼ 5 is the number of degrees of freedom. If there are
multiple π0 candidates surviving the kinematic fit in an
event, the one with the smallest χ25C is kept. The lepton pair
is taken as an ϒð1SÞ candidate if its invariant mass is in the
region ½9.42; 9.60� GeV=c2.
The χbJ candidates are reconstructed with the selected

ϒð1SÞ and the photon not used to form a π0 candidate.
The invariant mass of πþπ−π0 (Mðπþπ−π0Þ) versus the
corrected invariant mass of γϒð1SÞ (Mðγϒð1SÞÞ≡
Mðγlþl−Þ −Mðlþl−Þ þmϒð1SÞ) is shown in Fig. 1 for
the sum of the data samples in theϒð11020Þ energy region,
which is defined as Ec:m: > 10.96 GeV. Clusters of events
for the production of χbJ can be seen both whenMðπþπ−π0Þ
is in the ωmass region (½0.75; 0.81� GeV=c2) and at higher
masses (> 0.81 GeV=c2). For events havingMðπþπ−π0Þ in
theωmass region, the χb2 signal is dominantwhile for signal
events with higher πþπ−π0 masses, the χb1 signal is
dominant. The background in this case comes predomi-
nantly from false π0 candidates produced by combinatorial
photons.
An unbinned two-dimensional (2D) extended maximum

likelihood fit to the Mðπþπ−π0Þ and Mðγϒð1SÞÞ distribu-
tions of the candidate events is applied to determine the
numbers of ωχbJ and πþπ−π0χbJ events. In the fit, the
shapes of ωχbJ and πþπ−π0χbJ obtained from MC simu-
lation are used to describe the signals, and a 2D function
fðx; yÞ ¼ axþ by (x ¼ Mðγϒð1SÞÞ and y ¼ Mðπþπ−π0Þ)
is used to fit the background. Here the πþπ−π0χbJ MC
sample is generated following a four-body phase space

TABLE I. The predicted branching fractions of ϒð11020Þ → ωχbJ and ϕχbJ [16], as well as the relative
magnitudes, where Bj ≡ Bðϒð11020Þ → ωðϕÞχbjÞ, Rij ≡ Bi

Bj
.

Decay mode B0 B1 B2 R10 R20 R21

ωχbJ ð0.15–2.81Þ × 10−3 ð0.63–11.68Þ × 10−3 ð1.08–20.02Þ × 10−3 ≈4.11 ≈7.06 ≈1.72
ϕχbJ ð0.68–4.62Þ × 10−6 ð0.50–3.43Þ × 10−6 ð2.22–15.18Þ × 10−6 ≈0.74 ≈3.28 ≈4.43

TABLE II. Integrated luminosity at different c.m. energy as
well as the energy-dependent Born cross sections for eþe− →
πþπ−π0χbJ with statistical uncertainty only. A 11.9% common
systematic uncertainty is not included.

Ec:m: (GeV) L ðfb−1Þ σBornðπþπ−π0χbJÞ (pb)
10.7711 0.955 −1.44þ2.62

−1.74
10.8203 1.164 2.72þ2.07

−1.43
10.8497 0.989 2.70þ2.19

−1.41
10.8589 0.989 0.64þ1.51

−0.75
10.8633 47.648 0.82þ0.10

−0.10
10.8667 45.553 0.68þ0.10

−0.10
10.8686 22.938 0.89þ0.16

−0.16
10.8695 0.978 1.23þ1.96

−1.21
10.8785 0.978 1.90þ1.90

−1.17
10.8836 1.230 1.37þ1.56

−1.01
10.8889 0.989 1.20þ1.63

−0.93
10.8985 0.983 1.14þ1.55

−0.88
10.9011 0.873 −1.25þ1.82

−1.06
10.9077 0.980 0.51þ1.50

−0.87
10.9275 0.667 2.12þ2.11

−1.30
10.9575 0.851 0.70þ1.67

−0.83
10.9775 0.999 2.84þ1.96

−1.32
10.9919 0.986 1.10þ1.50

−0.87
11.0068 0.976 3.05þ1.86

−1.28
11.0164 0.771 3.47þ2.11

−1.46
11.0175 0.849 0.00þ0.95

−0.32
11.0220 0.982 0.84þ1.49

−0.98
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(PHSP) distribution, and this process is denoted as
ðπþπ−π0Þnon−ωχbJ. The projections of the fit results for
events in the χbJ signal region (Mðγϒð1SÞÞ ∈ ½9.87;
9.93� GeV=c2), in the ω signal region, and in the region
above the ω mass are also shown in Fig. 1. The statistical
significances for ðπþπ−π0Þnon−ωχb1, ðπþπ−π0Þnon−ωχb2,
ωχb1 and ωχb2 are 5.3σ, 0.0σ, 0.0σ and 2.5σ, respectively.
The significances are calculated based on the change in
likelihood when the signal yield is set to zero in the fit [25].
The signal yields for ðπþπ−π0Þnon−ωχb1 and ωχb2 are
19.6� 5.3 and 7.8� 3.2, respectively, and the signal
yields for ωχb1 and ðπþπ−π0Þnon−ωχb2 are consistent
with zero. Then we assume that either the processes
ðπþπ−π0Þnon−ωχb1 and ðπþπ−π0Þnon−ωχb2 exist at the same
time, or the processes ωχb1 and ωχb2 exist at the same time,
and the fit is repeated. The statistical significances for
ðπþπ−π0Þnon−ωχbJ and ωχbJ are 6.1σ and 4.0σ, respec-
tively. The changes on the significances arise from the
similarity in signal shapes between ðπþπ−π0Þnon−ωχb1 and
ðπþπ−π0Þnon−ωχb2, and between ωχb1 and ωχb2. Thus,
evidence for ωχbJ has been found, but we cannot determine
whether the events are from ωχb1 or ωχb2. We also use
other forms of background descriptions as systematics.
Changes in the signal yields and significances are
negligible.
In order to study the energy dependent cross section of

πþπ−π0χb1 and πþπ−π0χb2 events, we extract the observed
signal yields Nobs with data samples listed in Table II.
Because of the limited statistics for most energy points, we
do not perform a 2D fit as for the summed sample, nor dowe
separate πþπ−π0 intoω and non-ω, nor γϒð1SÞ into χb1 and
χb2. The number of χbJ signal events in each sample is
computed using the formula: Nobs ¼ Nsig − Nside, where
Nsig is the number of events in the χbJ signal region andNside

is that in the sideband region. Here the signal region is

defined asMðγϒð1SÞÞ ∈ ½9.852; 9.952� GeV=c2, while the
sideband region is [9.77, 9.82] and ½9.98; 10.03� GeV=c2.
The Born cross sections are calculated with

σBorn ¼ Nobs

ϵBinterLð1þ δÞ=j1 − Πj2 ; ð1Þ

where ϵ is the reconstructed efficiency, Binter is the
corresponding product of intermediate decay branching
fractions, L is the integrated luminosity, (1þ δ) is the ISR
correction factor, and (1=j1 − Πj2) is the vacuum polari-
zation factor [26]. We use the weighted branching
fraction Binter¼Bðχb1→γϒð1SÞÞ·fþBðχb2→γϒð1SÞÞ·
ð1−fÞ, where f ¼ N1=ðN1 þ N2Þ ¼ 0.74� 0.06 is the
fraction of χb1 in the process eþe− → πþπ−π0χbJ near
the ϒð10860Þ peak [4]. In order to estimate the ISR
correction factors, we use

1þ δ ¼
R 1−

m2
0
s

0 GBWðsð1 − xÞÞFðx; sÞdx
GBWðsÞ

; ð2Þ

wherem0 is the mass threshold of πþπ−π0χbJ, Fðx; sÞ is the
radiative function [23] and GBWðsÞ is the Breit-Wigner
(BW) function,

GBWðsÞ ¼
12πΓee · B · Γtot

ðs −M2Þ2 þM2Γ2
tot
×

ΦðsÞ
ΦðMÞ ; ð3Þ

where M is the nominal mass of ϒð10860Þ or ϒð11020Þ,
Γtot is the total width, Γee is the partial decay width of eþe−

channel, B is the branching fractions of πþπ−π0χbJ, and Φ
is given by considering πþπ−π0 as a wide resonance
with mass distribution generated in four-body eþe− →
πþπ−π0χbJ phase space.
The energy-dependent cross sections for eþe− →

πþπ−π0χbJ are listed in Table II and plotted in Fig. 2. A
maximum likelihood fit of the cross sections is performed.
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FIG. 1. A scatter plot of Mðπþπ−π0Þ versus Mðγϒð1SÞÞ from
data (top left), and the projections of the 2D fit for events in the
χbJ signal region (top right), in the ω signal region (bottom left),
and out of the ω signal region (bottom right).
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The likelihood for the three data samples of larger inte-
grated luminosity around 10.865 GeV is calculated assum-
ing the number of signal events follows the Gaussian
distribution:

Lðμsig;Nobs; σÞ ¼
1ffiffiffiffiffiffi
2π

p
σ0
e−

ðμsig−NobsÞ2
2σ02 ; ð4Þ

where μsig is the number of expected signal events, and σ0 is
the statistical uncertainty ofNobs. For the other samples, the
likelihood is calculated assuming the number of signal
events follows the Poisson distribution:

Lðμsig;Nsig; NsideÞ

¼
Z

∞

0

PðNsig; μsig þ μbkgÞPðNside; μbkgÞdμbkg; ð5Þ

where PðN; μÞ ¼ 1
N!
μNe−μ is the probability density func-

tion of the Poisson distribution, and μbkg is the number of
expected background events. Since the known cross section
energy dependences, i.e., those of ππϒðnSÞ [8] and
ππhbðmPÞ [9], exhibit ϒð10860Þ and ϒð11020Þ peaks
but no nonresonant contributions. The fit function here is
also a coherent sum of two BW amplitudes in the form of
Eq. (3) for ϒð10860Þ and ϒð11020Þ, and the masses and
widths are fixed to their world average values [22] while the
corresponding productsΓee · B are left free. The fit results are
shown in Fig. 2. Two solutions are found that differ in phase,
but the resulting Γee · B are consistent with each other. The
obtained product branching fractions are Bðϒð10860Þ→
eþe−Þ ·Bðϒð10860Þ→ πþπ−π0χbJÞ ¼ ð15.3� 3.7Þ× 10−9,
Bðϒð11020Þ → eþe−Þ · Bðϒð11020Þ → πþπ−π0χbJÞ ¼
ð18.3 � 9.0Þ × 10−9, where the errors are statistical. We
also try to introduce a coherent continuumcomponent into the
fit, but the significance of this hypothesis is only 1.4σ. The
introduction of the continuum term results in a change of the
ϒð10860Þ product branching fraction of 12.6 × 10−9 and that
of the ϒð11020Þ product branching fraction of 12.8 × 10−9,
which are taken as systematic uncertainty due to “continuum
contribution.”
There are several sources of systematic error in the cross

section measurements, and most of the uncertainties are
similar to the previous work [4], including tracking
efficiency (1.0% per pion and kaon track and 0.35% per
lepton), PID efficiency (1.3% per pion and 1.6% per
lepton), photon energy resolution calibration (1.1%), π0

selection (2.2%), 5C kinematic fit (4.2%), and trigger
simulation (3.0%). The uncertainty from luminosity is
1.5% [9]. Comparing the reconstruction efficiency with
the ISR process in EVTGEN with the efficiency without
the ISR process added to EVTGEN, but still corrected for
with the ISR correction factor, yields an uncertainty of
1.0%. The corresponding uncertainty from the branching
fractions of χbJ → γϒð1SÞ, ϒð1SÞ → lþl− is 8.2% [22].

The total systematic uncertainty, 11.9%, is obtained by
adding all the above results in quadrature.
The systematic uncertainty in the measured branching

fractions rises from the cross section measurements and the
fit to those cross sections. The systematic uncertainties in
the fit to the cross sections mainly come from the para-
metrization of the BW function, PHSP factor, resonance
parameters, and the possible continuum contribution. The
first is estimated by replacing the constant width with an
energy dependent width Γtot ¼ Γ0

tot ·Φð ffiffiffi
s

p Þ=ΦðMÞ. The
second source is estimated by replacing the PHSP factor
of πþπ−π0χbJ with the two-body PHSP factor of ωχbJ.
The third source is estimated by varying the resonance
parameters ϒð10860Þ and ϒð11020Þ within�1σ. The final
systematic uncertainty is estimated by adding a coherent
continuum contribution to the fit function. The changes of
the branching fractions are taken as the symmetrized
systematic uncertainty. The details are listed in Table III.
By using Bðϒð10860Þ→eþe−Þ¼ð6.1�1.6Þ×10−6 and

Bðϒð11020Þ → eþe−Þ ¼ ð2.1þ1.1
−0.6Þ × 10−6 [22], we obtain

Bðϒð10860Þ→πþπ−π0χbJÞ¼ð2.5�0.6�2.1�0.7Þ×10−3,
Bðϒð11020Þ→ πþπ−π0χbJÞ¼ ð8.7�4.3�6.1þ4.5

−2.5Þ×10−3,
where the first errors are statistical, the second are systematic
errors combined from the cross section measurements and
line shape fit, and the third result from the branching fractions
of ϒð10860Þ and ϒð11020Þ → eþe− [22].
To reconstruct eþe− → ϕχbJ, we require at least two

kaons in one event. There is no requirement on the number
of photons, but a list of photon candidates is created in one
event satisfying jMðγγ2Þ −mπ0 j > 13 MeV=c2, where γ2 is
any other photon in the event with Eγ2 > 0.1 GeV, andmπ0

is the nominal mass of the π0. The data are divided into
two categories. One includes events when one of the
photons in the above list satisfies MðγKþK−Þrecoil≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ffiffiffi

s
p −EγKþK−Þ2−ðp⃗γKþK−Þ2

q
∈½9.42;9.50�GeV=c2, i.e.,

in the ϒð1SÞ mass region, to tag χbJ → γϒð1SÞ events;
the other includes all other events, to tag χbJ → non −
γϒð1SÞ events. Here (p⃗γKþK− , EγKþK−) is the four momenta
of γKþK− system in c.m. frame.

TABLE III. Summary of the absolute systematic uncertainties
in product branching fractions (×10−9), where Bð10860; 11020Þ
represent Bðϒð10860; 11020Þ → eþe−Þ · Bðϒð10860; 11020Þ →
πþπ−π0χbJÞ.
πþπ−π0χbJ Bð10860Þ Bð11020Þ
Cross sections 1.8 2.1
BW parametrization 0.6 0.4
PHSP factor 0.6 0.2
Resonance parameters 2.4 1.6
Continuum contribution 12.2 12.6

Sum 12.6 12.8
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We use the figure of merit, S=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
S þ B

p
, to optimize the

KþK− invariant mass window requirement. Here S is the
reconstructed number of signal events obtained from
MC simulation of the signal process, ϒð11020Þ → ϕχbJ
with ϕ → KþK−, χbJ → anything, in the signal region,
½9.88; 9.93� GeV=c2. The number is normalized according
to the theoretical calculation of the branching fraction of
ϒð11020Þ → ϕχbJ [16] and the total ϒð11020Þ events in
our data sample. B is the number of background events in
the signal region in the generic MC sample with the c.m.
energy shifted to 11.022 GeV. We require MðKþK−Þ to be
within mϕ � 7.5ð7.0Þ MeV=c2 for category one (two),
where mϕ is the nominal mass of ϕ [22]. The ϕ mass
sideband region is defined as MðKþK−Þ ∈ ½1.000; 1.005�
or ½1.035; 1.040� GeV=c2. There is no evidence for the χbJ
signal in the ϕ mass sideband events, nor in the generic
MC sample (significance is less than 0.1σ from the fit)
mentioned above.
After applying all the selection criteria, the recoil mass

spectra of ϕ as a function of the initial beam four momenta
from both data categories are shown in Fig. 3 for the sum
of data in the energy region

ffiffiffi
s

p ¼ 10.96–11.05 GeV.
We perform a simultaneous unbinned maximum likelihood
fit to the ϕ recoil mass spectra with the signal shapes from
the simulated signal MC shapes, and a background shape
obtained from data with the following procedure: a series of
shapes are obtained from ϒð5SÞ data, where, in calculating
the ϕ recoil mass, the c.m. energy is changed to that of each

individual data point, and summing up the shapes according
to the luminosity. The ratios of the numbers of χb1 or χb2
events in the two categories are fixed according to the
expected branching fractions of χb1 or χb2 → γϒð1SÞ [22]
and the efficiencies. The fit results, which yield χ2=ndf ¼
104.2=55 ¼ 1.9, are shown in Fig. 3. According to the fit,
ð1.5� 0.5Þ × 103 χb1 and ð2.4� 0.5Þ × 103 χb2 events are
produced. The statistical significances are found to be 3.3σ
and 4.8σ for χb1 and χb2, respectively.
When we vary the background shape by multiplying the

nominal background shape with a first-, second-, or third-
order polynomial, the smallest significances of the χb1 and
χb2 signals are found to be 2.6σ and 2.1σ, respectively
(multiplying by the third-order polynomial), yielding
χ2=ndf ¼ 43.6=49 ¼ 0.89. The most conservative upper
limits on the numbers of produced signal events in all the
above tests are reported. After considering the systematic
uncertainty which we discuss later, the upper limits for the
produced numbers of ϕχb1 and ϕχb2 signal events are
determined to be 2.2 × 103 and 3.1 × 103 at 90% confi-
dence level (C.L.), respectively. The upper limits on the
Born cross sections of eþe− → ϕχb1 and ϕχb2 are 0.7 and
1.0 pb, respectively, averaged over the ϒð11020Þ region,
specifically

ffiffiffi
s

p ¼ 10.96–11.05 GeV. The calculation is
based on Eq. (1), where the reconstruction efficiency,
ISR correction factor, and vacuum polarization factor are
averaged with weights according to the luminosity of each
sample.
The sources of systematic uncertainties in the ϕχbJ cross

section measurement are similar to those of the πþπ−π0χbJ
modes, including the tracking efficiency, PID, photon
detection, luminosity, trigger simulation, ISR correction,
ϕ mass window, and intermediate branching fraction. Most
of these have been discussed in the πþπ−π0χbJ analysis.
The uncertainty from the ϕ mass window requirement is
found to be negligible by studying the consistency of the
KþK− invariant mass between data and MC simulation.
The uncertainty from the branching fraction of ϕ → KþK−

is 1.0% [22]. The total systematic uncertainty for the cross
section measurement is thus, combining all uncertainties in
quadrature, 5.5% for either eþe− → ϕχb1 or ϕχb2.
In summary, using the energy scan data in the vicinity

of the ϒð11020Þ resonance, we observe the eþe− →
ðπþπ−π0Þnon−ωχb1 process with significance of 5.3σ.
Evidence for ωχbJ is found but we cannot tell whether it is
ωχb1 orωχb2. The limited statistics prevents us from drawing
a conclusion concerning the origin of the signal events, that is,
whether they arise from bottomonium decay, continuum pro-
duction, or both. Since no continuum production of a multi-
body final state with a bottomonium is known, it is natural to
assume that the origin of the signal is bottomonium. Under
this assumption, the branching fractions are Bðϒð10860Þ →
πþπ−π0χbJÞ ¼ ð2.5� 0.6� 2.1� 0.7Þ × 10−3, which is
compatible with the previous measurement [4], and
Bðϒð11020Þ→ πþπ−π0χbJÞ¼ ð8.7�4.3�6.1þ4.5

−2.5Þ×10−3,
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FIG. 3. The simultaneous fit results for data having
MrecoilðγKþK−Þ, with the recoiling mass of γKþK−, in the
ϒð1SÞ mass window (up) and out of the ϒð1SÞ mass window
(down). Dots with error bars are data, the red solid lines are the
best fit, and blue dashed lines are backgrounds.
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which is compatible with the theoretical predictions [16].
Based on the 2D fit with summed data, the relativemagnitude

R21ðωÞ≡ Bðϒð11020Þ→ωχb2Þ
Bðϒð11020Þ→ωχb1Þ can be estimated to be 0.4� 0.2,

where the common systematic uncertainties cancel.
The processes eþe− → ϕχbJ are also searched for in

data within
ffiffiffi
s

p ¼ 10.96–11.05 GeV, with no significant
signals being observed. We report upper limits on the
Born cross sections of eþe− → ϕχb1 and ϕχb2 as 0.7
and 1.0 pb at 90% C.L., respectively. Compared with the
total cross section of eþe− → ϒð11020Þ, these upper
limits correspond to ϒð11020Þ decay branching fractions
of order 10−3, well above the theoretical predictions of
order 10−6 [16].
Our measurement of the transition rate agrees with the

expectation of Ref. [16], but the measured relative magni-
tudes R21ðωÞ are significantly less than the theoretical
predictions, which should be more reliable than the
branching fraction predictions. This may inspire theorists
to further investigate the discrepancy between the exper-
imental measurement and the theoretical calculation.
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