Государственное бюджетное образовательное учрежденне высшего образования Московской области «Университет «Дубна» (государственный университет «Дубна»)

Филиал «Протвино» Кафедра «Информационные технологии»

> УТВЕРЖДАЮ Пиректор

> > УЕВСИКОВ А.А./ Фамилия И.О.

> > > 2019 г.

Рабочая программа дисциплины (модуля)

Компьютерные технологии анализа динамических систем

наименование дисциплины (модуля)

Направление подготовки (специальность) 09.03.01 Информатика и вычислительная техника

код и наименование направления подготовки (специальности)

Уровень высшего образования бакалавриат

бакалавриат, магистратура, специалитет

Направленность (профиль) программы (специализация) «Программное обеспечение вычислительной техники и автоматизированных систем»

Форма обучения

очная

очная, очно-заочная, заочная

Протвино, 2019

Преподаватель (преподаватели):

Гусев В.В., доцент, к.ф.-м.н, кафедра информационных технологий

Фамилия И.О., должность, ученая степень, ученое звание, кафедра; подпись

4//

Рабочая программа разработана в соответствии с требованиями ФГОС ВО по направлению подготовки (специальности) высшего образования 09.03.01 Информатика и вычислительная техника

(код и наименование направления подготовки (специальности))

Программа рассмотрена на заседании кафедры <u>информационных технологий</u> (название кафедры)

Протокол заседания №8 от «23» апреля 2019 г.

Заведующий кафедрой

_ Нурматова Е.В.

Оглавление

1 Цели и задачи освоения дисциплины (модуля)	4
2 Объекты профессиональной деятельности при изучении дисциплины (модуля)	4
3 Место дисциплины (модуля) в структуре ОПОП	4
4 Планируемые результаты обучения по дисциплине (модулю), соотнесенные с	
планируемыми результатами освоения образовательной программы (компетенциями	
выпускников)	4
5 Объем дисциплины (модуля) в зачетных единицах с указанием количества академических	X
или астрономических часов, выделенных на контактную работу обучающихся с	
преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся	5
6 Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием	
отведенного на них количества академических или астрономических часов и виды учебных	K
занятий	5
7 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся	I
по дисциплине (модулю) и методические указания для обучающихся по освоению	
дисциплины (модулю)	8
8 Применяемые образовательные технологии для различных видов учебных занятий и для	
контроля освоения обучающимися запланированных результатов обучения	8
9 Фонд оценочных средств для промежуточной аттестации по дисциплине (модулю)	8
10 Ресурсное обеспечение	16
11 Язык преподавания	18

1 Цели и задачи освоения дисциплины (модуля)

Курс «Компьютерные технологии анализа динамических систем» предназначен для приобретения студентами: понимания места и роли моделирования при анализе и синтезе сложных динамических систем; умения применять современные технологии планирования и проведения компьютерного моделирования; знаний анализа и интерпретации результатов моделирования, проверки адекватности модели исследуемой системе.

Задачи дисциплины

После изучения дисциплины студенты должны знать:

- цели и методологию моделирования;
- основные классы существующих динамических моделей;
- методы формализации динамических систем и способы их реализации с помощью современных компьютерных технологий;
- навыки исследования и анализа динамических систем;
- методы обработки данных компьютерных экспериментов.

2 Объекты профессиональной деятельности при изучении дисциплины (модуля) Объектами профессиональной деятельности в рамках изучаемой дисциплины (модуля) являются:

Математическое и программное обеспечение ЭВМ

3 Место дисциплины (модуля) в структуре ОПОП

Дисциплина Б1.В.ОД.9 «Компьютерные технологии анализа динамических систем» относится к обязательным дисциплинам вариативной части блока дисциплин ОПОП ВО.

Приступая к изучению дисциплины, студенты должны иметь твердые знания, умения, навыки и компетенции по предметам «Математический анализ», «Линейная алгебра», «Теория вероятностей и математическая статистика», «Методы оптимизации», «Теория принятия решений».

Освоение материала дисциплины позволит студенту быть подготовленным к изучению дисциплин при подготовке и защите выпускной квалификационной работы и последующей профессиональной деятельности в качестве бакалавра по направлению 09.03.01 «Информатика и вычислительная техника».

4 Планируемые результаты обучения по дисциплине (модулю), соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями выпускников)

Формируемые компетенции (код компетенции, уровень (этап)освоения) (последний – при наличии в карте компетенции)	Планируемые результаты обучения по дисциплине (модулю), характеризующие этапы формирования компетенций
ПК-3 - способность обосновывать принимаемые проектные решения, осуществлять постановку и выполнять эксперименты по проверке их корректности и эффективности	Знать: основы общей теории сложных систем, классификацию и закономерности систем, методы и модели описания и анализа систем Уметь: использовать полученные теоретические знания: для получения, хранения, переработки информации; при решении различных задач с использованием специализированных программ Владеть: навыками применения современных технических средств и информационных технологий для решения задач

5 Объем дисциплины (модуля) в зачетных единицах с указанием количества академических или астрономических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся

Объем дисциплины (модуля) составляет 4 зачетных единиц, всего 144 часов, из которых:

51 часов составляет контактная работа обучающегося с преподавателем¹:

- 17 часов лекционные занятия;
- 34 часов практические занятия;
- 36 часов мероприятия промежуточной аттестации⁴ (экзамен),
- 57 часов составляет самостоятельная работа обучающегося.

6 Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических или астрономических часов и виды учебных занятий

№ темы	Наименование тем	Содержание тем
1	Основные понятия	Классификация видов моделирования
	теории моделирования	систем.Проблема качества моделирования.
	сложных систем.	Адекватность модели изучаемой системе. Причины и
		устранение неадекватности модели изучаемой
		системе. Особенности компьютерного моделирования.
		Требования пользователя к модели. Основные этапы
		моделирования систем. Построение концептуальных
		моделей систем и их формализация. Алгоритмизация
		моделей систем и их машинная реализация.
2	Языки и	Обзор языков и программных средств
	инструментальные	моделирования. Среда моделирования SciLab
	средства	
	моделирования	
3	Моделирование	Понятие о динамической системе и её модели.
	динамических систем	Параметры состояния системы, начальные условия,
		закон функционирования. Точки равновесия,
		фазовое пространство, фазовая траектория, фазовый
		портрет системы. Устойчивость и неустойчивость
		точек равновесия. Точки равновесия в автономных
		динамических системах двух переменных.
		Аналитическое исследование и компьютерное
		моделирование поведения систем.Понятие о
		преобразовании Лапласа. Функциональное
		описание системы. Передаточная функция. Методы
		вычисления передаточной функции.
4	Вычислительные	Постановка задачи. Методы Эйлера. Методы Рунге-
	методы решения задачи	Кугта. Пошаговый контроль точности.
	Коши	
5	Примеры	Модели динамических систем: Колебательные

¹ Перечень видов учебных занятий уточняется в соответствии с учебным планом.

_

	динамических систем	системы, механические, электрические, химические системы. Биологические системы: модель Мальтуса динамики численности народонаселения земного шара; модельФерхюльста численности однородной популяции; модель Вальтера-Лотки.
6	Моделирование	Классификация задач математической физики.
	распределённых систем	Начальные и граничные условия. Вычислительные
		методы исследования распределённых систем: метод
		Галёркина, метод конечных элементов; метод
		конечных разностей.
7	Обработка результатов	Планирование вычислительных экспериментов.
	вычислительных	Методы теории планирования экспериментов.
	экспериментов	Факторные пространства. Оценка влияния и
		взаимосвязи факторов. Виды факторного анализа
		экспериментов. Обработка результатов
		вычислительных эксперимента. Метод наименьших
		квадратов. Регрессионный анализ результатов
		моделирования. Проверка адекватности модели.
		Корреляционный анализ результатов моделирования.

								В	гом числе:				
Наименование и краткое содержание разделов и тем дисциплины (модуля) Форма промежуточной аттестации по дисциплине (модулю)		Контактная работа (работа во взаимодействии с преподавателем), часы из них ²										Самостоятельная работа обучающегося, часы, из них	
		Лекционные занятия	Семинарские занятия	Практические занятия	Лабораторные занятия		Групповые консультации	Индивидуальные консультации	Учебные занятия, направленные на проведение текущего контроля успеваемости (коллоквиумы, практические контрольные занятия и др.)*	Всего	Выполнение домашних заданий	Подготовка рефератов и т.п.	
	1	1	3ce _N	иестр			<u> </u>		, 4	I			
Тема 1Основные понятия теории моделирования сложных систем.		1								1			
Тема 2 Языки и инструментальные средства моделирования		2		8						10	10		
Тема 3Моделирование динамических систем		4		8						12	10		15
Тема 4Вычислительные методы решения задачи Коши		2		2						4	10		
Тема 5 Примеры динамических систем		2		8						10			
Тема 6Моделирование распределённых систем		4		6						10	4		20
Тема 7Обработка результатов вычислительных экспериментов		2		2						4			20
Промежуточная аттестация экзамен (указывается форма проведения)**	6.43	X											
Итого		17		34						51	34		75

² Перечень видов учебных занятий уточняется в соответствии с учебным планом. ³ Часы на промежуточную аттестацию (зачет, дифференцированный зачет, экзамен и др.) указываются в случае выделения их в учебном плане.

7 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю) и методические указания для обучающихся по освоению дисциплины (модулю)

Задания к выполнению контрольных работ.

Задания к практическим занятиям

8 Применяемые образовательные технологии для различных видов учебных занятий и для контроля освоения обучающимися запланированных результатов обучения

Перечень обязательных видов работы студента:

- Посещение лекционных занятий;
- посещение семинарских занятий;
- выполнение контрольных работ;
- самостоятельная работа студента (СРС) направлена на закрепление навыков самостоятельного выполнения тематических заданий;
- подготовка к опросу (рубежный контроль);
- участие в групповых дискуссиях на семинарских занятиях;
- сдача экзамена.

9 Фонд оценочных средств для промежуточной аттестации по дисциплине (модулю)

ПК-3 - способность обосновывать принимаемые проектные решения, осуществлять постановку и выполнять эксперименты по проверке их корректности и эффективности.

Полная карта компетенцийПК-3 приведена в документе «Матрица формирования компетенций» по направлению бакалавриата 09.03.01 Информатика и вычислительная техника»

Описание шкал оценивания

В 4 семестре (сдача экзамена) максимальное количество баллов, которые студент может набрать за семестр – 100, в том числе:

49 баллов за посещение занятий, по 1 баллу за посещение лекции или практического занятия);

30 баллов за выполнение контрольной работы;

21 баллов за контрольные работы.

По результатам работы в семестре студент может получить автоматическую оценку «удовлетворительно», «хорошо» или «отлично» и может зачет с оценкой не сдавать. При желании повысить свою оценку, студент имеет право отказаться от автоматической оценки и сдать зачет с оценкой.

Если студент не набрал минимального количества баллов (51 балл) в течение семестра, то он в обязательном порядке сдаёт зачет с оценкой.

	±	
Общая сумма		
баллов за	Итоговая оценка	
семестр		
86-100	Отлично	
71-85	Хорошо	
51-70	Удовлетворительно	
0-50	Неудовлетворительно	

По итогам работы в семестре студент может получить максимально 100 баллов. Итоговой формой контроля является экзамен.

В течение семестра студент может заработать баллы за следующие виды работ:

Таблица 7

№	Вид работы	Сумма баллов
1	Работа на практических занятиях	21
2	Аудиторные и практические занятия (посещение)	49
3	Решение контрольных заданий (самостоятельные работа)	30
	Итого:	100

Текущий контроль успеваемости осуществляется в процессе выполнения практических и самостоятельных работ в соответствии с ниже приведенным графиком.

Виды	Недели работ																
работ	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
ПР-2					B3 1			33 1	B3 2			33 2	B3 3			33 3	

ВЗ – выдача задания

33 – защита задания

Критерии и процедуры оценивания результатов обучения по дисциплине

РЕЗУЛЬТАТ ОБУЧЕНИЯ по дисциплине (модулю) *)	Уров ень осво ения комп етен ции*		КРИТЕРИИ ОЦЕНИВАНИЯ РЕЗУЛЬТАТА ОБУЧЕНИЯ по дисциплине (модулю) ШКАЛА оценивания (критерии берутся из соответствующих карт компетенций, шкала оценивания (4 или более шагов) устанавливается в зависимости от того, какая система оценивания (традиционная или балльно-рейтинговая) применяется)									
		1	2	3	4	5						
Компетенция ПК-3 - способность обосновывать принимаемые проектные решо осуществлять постановку и выполнять эксперименты по проверке их корректнос эффективности.												
Знать (ПК-3): — основы общей теории сложных систем, классификацию и закономерности систем, методы и модели описания и анализа систем —	I - порог овый	От сут ств ие зна ни й	Не знает или слабо знает основные понятия по основы общей теории сложных систем, классификацию и закономерности систем, методы и модели описания и анализа систем Допускает множественные грубые ошибки.	Удовлетворите льно знает основные понятия основы общей теории сложных систем, классификаци ю и закономерност и систем, методы и модели описания и анализа систем Допускает достаточно серьезные ошибки.	знает основные понятия по основы общей теории сложных систем, классифик ацию и закономер ности систем, методы и модели описания и анализа систем Допускает отдельные негрубые ошибки.	Демонстрирует свободное и уверенное знание основных понятий по основы общей теории сложных систем, классификацию и закономерности систем, методы и модели описания и анализа систем Не допускает ошибок.	Устный опрос					
Уметь (ПК-3): — использовать полученные теоретические знания: для получения, хранения, переработки информации; при решении различных задач с использованием специализированных программ	I - порог овый	От сут ств ие ум ен ий	Демонстрирует частичное умение использовать полученные теоретические знания: для получения, хранения, переработки информации;	Демонстрируе т удовлетворите льное умениеиспольз овать полученные теоретические знания: для получения, хранения,	Демонстр ирует достаточн о устойчиво е умениеисп ользовать полученные теоретиче	Демонстрирует устойчивое умение использовать полученные теоретические знания: для получения, хранения, переработки информации; при	Выполне ние практич еского задания					

			при решении различных задач с использованием специализирова нных программ Допускает множественные грубые ошибки.	переработки информации; при решении различных задач с использование м специализиров анных программ Допускает достаточно серьезные ошибки.	ские знания: для получения , хранения, переработ ки информац ии; при решении различных задач с использов анием специализ ированны х программ Допускает отдельные негрубые	решении различных задач с использованием специализирован ных программ Не допускает ошибок.	
Владеть (ПК-3): — навыками применения современных технических средств и информационных технологий для решения задач	I - порог овый	От сут ств ие вл аде ни я	Не владеет или демонстрирует низкий уровень владения навыками применения современных технических средств и информационн ых технологий для решения задач Допускает множественные грубые ошибки.	Демонстрируе т удовлетворите льный уровень владения навыками применения современных технических средств и информационных технологий для решения задач. Допускает достаточно серьезные ошибки.	ошибки. Демонстр ирует хороший уровень владения навыками применен ия современных техническ их средств и информац ионных технологи й для решения задач Допускает отдельные негрубые ошибки.	Демонстрирует высокий уровень владения навыками применения современных технических средств и информационны х технологий для решения задач Не допускает ошибок.	Выполне ние практич еского задания

Типовые контрольные задания или иные материалы, необходимые для оценки результатов обучения, характеризующих этапы формирования компетенций и (или) для итогового контроля сформированности компетенции.

Формой промежуточной аттестации по дисциплине является экзамен.

Зачёт проводится на основе результатов контрольных работ, практических занятий и ответов на контрольные вопросы.

Ниже приводится полный перечень вопросов для подготовки к экзамену.

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Математическое моделирование. Понятие математического моделирования. Понятие системы в математическом моделировании.
- **2.** Классификация математических моделей в зависимости от сложности объекта моделирования
- **3.** Классификация математических моделей в зависимости от оператора модели (линейный, нелинейный, алгоритмический и др.)
- 4. Классификация математических моделей в зависимости от параметров модели
- 5. Классификация математических моделей в зависимости от целей моделирования
- **6.** Исследование особых точек дифференциального уравнения одной переменной $\frac{dx}{dt} = F(x) \, .$
- **7.** Исследование качественной структуры особых точек двух уравнений $\begin{cases} \frac{dx}{dt} = P(x(t), y(t)) \\ \frac{dy}{dt} = Q(x(t), y(t)) \end{cases}$
- 8. Понятие фазовых траекторий.
- 9. Определение матрицы линеаризации.
- 10. Получение характеристического уравнения.
- 11. Классификация грубых особых точек через корни характеристического уравнения.
- 12. Предельные циклы динамических систем.
- 13. Модель конкуренции популяций. Постановка задачи.
- **14.** Модель конкуренции популяций. Особые точки и возможные конфигурации системы от параметров задачи.
- 15. Модель конкуренции популяций. Анализ особых точек.
- 16. Классификация колебательных систем.
- 17. Линейная и нелинейная колебательная система.
- 18. Сосредоточенные и точечные системы.
- 19. Консервативные и неконсервативные системы.
- 20. Консервативный осциллятор.
- 21. Линейный осциллятор с затуханием.
- 22. Классификация уравнений математической физики двух переменных.
- 23. Физические процессы, описываемые уравнения эллиптического типа.
- 24. Физические процессы, описываемые уравнения гиперболического типа.
- 25. Физические процессы, описываемые уравнения параболического типа.
- 26. задача интерполирования,
- 27. задача аппроксимации.
- 28. Интерполяция по Лагранжу.
- 29. Сглаживание опытных данных методом наименьших квадратов

Тест на усвоение материала

1. Классические модели

1.1 Модель спроса-предложения
$$\begin{cases} s_{n+1} = ap_n - b \\ d_{n+1} = -cp_n + g \text{ соответствует устойчивому} \\ s_{n+1} = d_{n+1} \end{cases}$$

состоянию рынка при каких значениях $A = \frac{a}{c}$?

- a) A > 2
- 6) 0 < A < 2
- c) 0 < A < 1
- $_{\rm J}$) -1 < A < 1

1.2 Модель спроса-предложения
$$\begin{cases} s_{n+1} = ap_n - b \\ d_{n+1} = -cp_n + g \text{ соответствует неустойчивому} \\ s_{n+1} = d_{n+1} \end{cases}$$

состоянию рынка при каких значениях $A = \frac{a}{c}$?

- a) A > 2
- 6) 0 < A < 2
- c) 0 < A < 1
- $_{\rm J}$)1 < A
- 1.3 Какое максимальное количество точек равновесия имеет система

$$\begin{cases} \frac{dN_1}{dt} = N_1(t)*[r1*(ng1-N_1(t))-al2*N_2(t)]\\ \frac{dN_2}{dt} = N_2(t)*[r2*(ng2-N_2(t))-al1*N_1(t)] \end{cases},$$
 соответствующая модели

конкуренции популяций?

- a) 3
- б) 2
- c)4
- д) **5**
- 1.4 Какого типа точка равновесия $(N_1 = 0, N_2 = 0)$

системы
$$\begin{cases} \frac{dN_1}{dt} = N_1(t)*[r1*(ng1-N_1(t))-al2*N_2(t)]\\ \frac{dN_2}{dt} = N_2(t)*[r2*(ng2-N_2(t))-al1*N_1(t)] \end{cases},$$
 соответствующей модели

конкуренции популяций?

- а) устойчивый узел
- б)неустойчивый узел
- с) устойчивый фокус
- д) неустойчивый фокус
- с) центр

2. Качественная теория динамических систем

- 2.1 Какие точки равновесия уравнения $\frac{dx}{dt} = (x+2)(x+1)(3-x)(5-x)$ являются устойчивыми?
- a) $x_1 = -1$; $x_2 = 3$
- 6) $x_1 = -1; x_2 = 5$
- c) $x_1 = -2$; $x_2 = 3$

д)
$$x_1 = 3; x_2 = 5$$

2.2 Какие точки равновесия уравнения
$$\frac{dx}{dt} = (x+2)(x-3)(3+x)(5-x)$$
 являются неустойчивыми?

a)
$$x_1 = -3$$
; $x_2 = 3$

6)
$$x_1 = -2; x_2 = 5$$

c)
$$x_1 = -2; x_2 = 3$$

д)
$$x_1 = 3; x_2 = 5$$

2.3 Фазовые траектории системы
$$\begin{cases} \frac{dx}{dt} = P(x,y,t) \\ \frac{dy}{dt} = Q(x,y,t) \end{cases}$$
 определены в пространстве

координат

a)
$$(x,t)$$

$$\delta$$
) (x, y)

c)
$$(y,t)$$

$$\mathbf{J}$$
) (x, y, t)

2.4 Какая точка
$$(x, y)$$
 системы
$$\begin{cases} \frac{dx}{dt} = (x-3)(y-5)(x-6) \\ \frac{dy}{dt} = (y-3)(x-5)(y-6) \end{cases}$$
 не является точкой

равновесия?

a)
$$P(x = 3, y = 6)$$

6)
$$P(x=6, y=3)$$

c)
$$P(x=3, y=3)$$

д)
$$P(x=5, y=3)$$

2.5 Какая матрица является матрицей линеаризации системы
$$\begin{cases} \frac{dx}{dt} = 2x + 3y + 4 \\ \frac{dy}{dt} = x - 6y + 5 \end{cases}$$

a)
$$\begin{pmatrix} 2 & 1 \\ 3 & -6 \end{pmatrix}$$

$$6)\begin{pmatrix} 2 & 4 \\ 3 & 5 \end{pmatrix}$$

c)
$$\begin{pmatrix} 2 & 3 \\ 1 & -6 \end{pmatrix}$$

$$\mathbb{A}$$
 $\begin{pmatrix}
 2 & 3 & 4 \\
 1 & -6 & 5
 \end{pmatrix}$

2.6 Собственные значения матрицы линеаризации в точке равновесия
$$(x_0, y_0)$$
 системы
$$\begin{cases} \frac{dx}{dt} = P(x, y) \\ \frac{dy}{dt} = Q(x, y) \end{cases}$$
 равны $(\lambda_1 = 2, \lambda_2 = 5)$. К какому типу относится эта точка равновесия?

- а) устойчивый узел
- б) неустойчивый узел
- с) устойчивый фокус
- д) неустойчивый фокус
- с) центр
- 2.7 Собственные значения матрицы линеаризации в точке равновесия (x_0, y_0) системы

Сооственные значения матрицы линеаризации в точке равновесия
$$(x_0, y_0)$$
 $\begin{cases} \frac{dx}{dt} = P(x, y) \\ pabhu (\lambda_1 = 2, \lambda_2 = -5). \end{cases}$ К какому типу относится эта точка $\begin{cases} \frac{dy}{dt} = Q(x, y) \end{cases}$

равновесия?

- а) устойчивый узел
- б) неустойчивый узел
- с) устойчивый фокус
- д) неустойчивый фокус
- с) седловая точка
- 2.8 Собственные значения матрицы линеаризации в точке равновесия (x_0, y_0) системы

$$\begin{cases} \frac{dx}{dt} = P(x,y) \\ \frac{dy}{dt} = Q(x,y) \end{cases}$$
 равны $(\lambda_1 = -2, \lambda_2 = -3)$. К какому типу относится эта точка

равновесия?

- а) устойчивый узел
- б) неустойчивый узел
- с) устойчивый фокус
- д) неустойчивый фокус
- с)седловая точка
- Собственные значения матрицы линеаризации в точке равновесия (x_0, y_0) системы 2.9

Собственные значения матрицы линеаризации в точке равновесия
$$(x_0, y_0)$$
 систе
$$\begin{cases} \frac{dx}{dt} = P(x, y) \\ \frac{dy}{dt} = Q(x, y) \end{cases}$$
 равны $(\lambda_1 = 2 + 3i, \lambda_2 = 2 - 3i)$. К какому типу относится эта точка

равновесия?

- а) устойчивый узел
- б) неустойчивый узел
- с) устойчивый фокус
- д) неустойчивый фокус
- Собственные значения матрицы линеаризации в точке равновесия (x_0, y_0) системы 2.10

$$\begin{cases} \frac{dx}{dt} = P(x,y) \\ \frac{dy}{dt} = Q(x,y) \end{cases}$$
 равны $(\lambda_1 = 2i, \lambda_2 = -2i)$. К какому типу относится эта точка

равновесия?

- а) устойчивый узел
- б) неустойчивый узел
- с) устойчивый фокус
- д) неустойчивый фокус

с)!!! центр

3. Распределённые системы

3.1 Какого типа

уравнение
$$a_{11} \frac{\partial^2 u}{\partial x^2} - 2a_{12} \frac{\partial^2 u}{\partial x \partial y} + a_{22} \frac{\partial^2 u}{\partial y^2} = f(x, y, u) \ (a_{11} = 2, a_{12} = 1, a_{22} = 3)$$
?

- а) эллиптического
- б) параболического
- с) тригонометрического
- д) гиперболического

3.2 Какого типа уравнение
$$a_{11} \frac{\partial^2 u}{\partial x^2} - 2a_{12} \frac{\partial^2 u}{\partial x \partial y} + a_{22} \frac{\partial^2 u}{\partial y^2} = f(x, y, u) \ (a_{11} = 1, a_{12} = 1, a_{22} = 1)$$
?

- а) эллиптического
- б) параболического
- с) тригонометрического
- д) гиперболического
- 3.3 Какого типа

уравнение
$$a_{11} \frac{\partial^2 u}{\partial x^2} - 2a_{12} \frac{\partial^2 u}{\partial x \partial y} + a_{22} \frac{\partial^2 u}{\partial y^2} = f(x, y, u) \ (a_{11} = 1, a_{12} = 2, a_{22} = 1)$$
?

- а) эллиптического
- б) параболического
- с) тригонометрического
- д) гиперболического

Пример задания к Теме 3.

Исследование динамической системы

$$\frac{dx}{dt} = f_1(x, y); \quad \frac{dy}{dt} = f_2(x, y);$$

Задание:

- найти точки равновесия
- определить их тип
- построить фазовые траектории

Варианты:

1)
$$\frac{d}{dt} = 25 + x^2 - 4y^2; \frac{d}{dt} = 5xy + 1;$$

2)
$$\frac{dx}{dt} = x^2 - y^2$$
; $\frac{dy}{dt} = 5xy - 3$;

3)
$$\frac{dy}{dt} = 1 - x^2 - y^2$$
; $\frac{dx}{dt} = xy$;

4)
$$\frac{dx}{dt} = 5 + x^2 - y^2$$
; $\frac{dy}{dt} = x - 2y$;

5)
$$\frac{dx}{dt} = 77 - x^2 + 4y^2$$
; $\frac{dy}{dt} = xy$;

6)
$$\frac{dy}{dt} = 3 - x^2 - y^2$$
; $\frac{dx}{dt} = xy - 2$;

7)
$$\frac{dx}{dt} = 4 + 5x^2 - y^2$$
; $\frac{dy}{dt} = xy - 1$;

8)
$$\frac{dy}{dt} = 1 - 4x^2 - 3y^2$$
; $\frac{dx}{dt} = -11xy$;

9)
$$\frac{dx}{dt} = 50 + 5x^2 - 6y^2$$
; $\frac{dy}{dt} = 3x - 2y$;

10)
$$\frac{dx}{dt} = -x^2 + y^2$$
; $\frac{dy}{dt} = 10 - xy$;

11)
$$\frac{dy}{dt} = 3 + x^2 + y^2$$
; $\frac{dx}{dt} = xy - 2$;

12)
$$\frac{dx}{dt} = 4 + 5x^2 + 4y^2$$
; $\frac{dy}{dt} = 6xy - x$;

13)
$$\frac{dy}{dt} = 10 - 2x^2 - 3y^2; \quad \frac{dx}{dt} = -xy - y;$$

14)
$$\frac{dx}{dt} = 5x^2 + 6y^2$$
; $\frac{dy}{dt} = 3xy - 2y$;

15)
$$\frac{dx}{dt} = 8 - x^2 + 2y^2$$
; $\frac{dy}{dt} = 10x - xy$;

16)
$$\frac{dy}{dt} = 3 - 4x^2 - 2y^2$$
; $\frac{dx}{dt} = 5xy - 2y$;

10 Ресурсное обеспечение

• Перечень основной и дополнительной учебной литературы

Основная учебная литература

- 1. Чикуров, Н.Г. Моделирование систем и процессов : Учебное пособие / Н. Г. Чикуров. М. : РИОР: ИНФРА-М, 2015. 398с. : ил. ISBN 978-5-16-006482-6.
- 2. Чикуров Н. Г. Моделирование систем и процессов: Учебное пособие [Электронный ресурс] / Н.Г. Чикуров. М.: ИЦ РИОР: НИЦ Инфра-М, 2013. 398 с.: (Высшее образование: Бакалавриат). (переплет) ISBN 978-5-369-01167-6 // ЭБС "Znanium.com". URL:http://znanium.com/catalog/product/392652 (дата обращения: 17.04.2019). Режим доступа: ограниченный по логину и паролю
- 3. Градов В.М. Компьютерное моделирование: Учебник [Электронный ресурс]/ В.М. Градов, Г.В. Овечкин, П.В. Овечкин, И.В. Рудаков М.: КУРС: ИНФРА-М, 2018. 264с. ISBN 978-5-906818-79-9 // ЭБС "Znanium.com". URL:http://znanium.com/catalog/product/911733 (дата обращения: 17.04.2019). Режим доступа: ограниченный по логину и паролю
- 4. Кобелев Н.Б. Имитационное моделирование: Учебное пособие [Электронный ресурс] / Н.Б. Кобелев, В.А. Половников, В.В. Девятков. М.: КУРС: НИЦ Инфра-М, 2013. 368 с.: ISBN 978-5-905554-17-9 // ЭБС "Znanium.com". URL: http://znanium.com/catalog/product/361397 (дата обращения:20.04.2019). Режим доступа: ограниченный по логину и паролю

Дополнительная учебная литература

- 1. Северцев, Н. А. Динамические системы: безопасность и отказоустойчивость: учеб. пособие для академического бакалавриата [Электронный ресурс] / Н. А. Северцев. 2-е изд., перераб. и доп. Москва: Издательство Юрайт, 2019. 415 с. (Серия: Бакалавр. Академический курс). ISBN 978-5-534-05711-9. Текст: электронный // ЭБС Юрайт [сайт]. URL: https://biblio-online.ru/bcode/441452 (дата обращения:15.04.2019). Режим доступа: ограниченный по логину и паролю
- 2. Тарасевич Ю.Ю. Математическое и компьютерное моделирование. Вводный курс: Учеб. пособие. 2-е изд., исправ. М.: Едиторал, УРСС, 2003. 144 с.
- 3. Осипов, В. В. Моделирование динамических процессов методом точечных представлений [Электронный ресурс] : Монография / В. В. Осипов. Красноярск : Сиб. федер. ун-т, 2012. 304 с. ISBN 978-5-7638-2538-1. // ЭБС "Znanium.com". URL: http://znanium.com/catalog/product/441549 (дата обращения: 03.04.2019). Режим доступа: ограниченный по логину и паролю

• Периодические издания

- 1. Информационные технологии и вычислительные системы / Учредитель Федеральное государственное учреждение "Федеральный исследовательский центр "Информатика и управление" РАН"; гл. ред. С.В. Емельянов, М.: Федеральное государственное учреждение "Федеральный исследовательский центр "Информатика и управление" РАН". Год основания 1995 г. Полные электронные версии статей журнала доступны на сайте научной электронной библиотеки «eLIBRARY.RU»: https://elibrary.ru/contents.asp?titleid=8746
- 2. Информация и безопасность / учредители: ФГБОУ Воронежский государственный технический университет; гл. ред. А.Г. Остапенко. Воронеж.: Воронежский государственный технический университет. Журнал основан в 1998 году. Полные электронные версии статей журнала доступны на сайте научной электронной библиотеки «eLIBRARY.RU»: http://elibrary.ru/contents.asp?titleid=8748
- 3. Открытые системы СУБД / учредитель и издатель: ООО «Издательство «Открытые системы»; гл. ред. Д. Волков. М.: Издательство «Открытые системы». Журнал основан в 1999 году. Сайт журнала http://www.osp.ru/os/ Полные электронные версии статей журнала доступны на сайте научной электронной библиотеки «eLIBRARY.RU»: https://elibrary.ru/contents.asp?titleid=9826
- 4. Программные продукты и системы / учредители: МНИИПУ (г.Москва), гл.редакция международного журнала «Проблемы теории и практики управления» (г. Москва), ЗАО НИИ «Центрпрограммсистем» (г. Тверь); гл. ред. С.В. Емельянов. Тверь.: НИИ «Центрпрограммсистем». Журнал основан в 1995 году. Полные электронные версии статей журнала доступны на сайте научной электронной библиотеки «eLIBRARY.RU»: https://elibrary.ru/contents.asp?titleid=9834; Сайт журнала www.swsys.ru
- 5. Российские нанотехнологии: научный журнал / Учредитель: Федеральное агентство по науке и инновациям РФ М.: Общество с ограниченной ответственностью Парк-медиа гл. ред. М.В.Алфимов Журнал основан в 2006 году. Полные электронные версии статей журнала представлены на сайте журнала https://yandex.ru/yandsearch?&clid=2186621&text=Nanotechnologies%20in%20Russia&lr=20576
- 6. Системный администратор / учредитель и издатель: Общество с ограниченной ответственностью "Издательский дом "Положевец и партнеры" гл. ред. Г. Положевец. М.: Общество с ограниченной ответственностью "Издательский дом "Положевец и партнеры" Журнал основан в 2002 году. Полные электронные версии статей журнала доступны на сайте научной электронной библиотеки «eLIBRARY.RU»: https://elibrary.ru/title_about.asp?id=9973

• Перечень ресурсов информационно-телекоммуникационной сети «Интернет» Электронно-библиотечные системы и базы данных

- 1. 9EC «Znanium.com»: http://znanium.com/
- 2. ЭБС «Лань»: https://e.lanbook.com/
- 3. ЭБС «Юрайт»: https://biblio-online.ru/
- 4. ЭБС «Университетская библиотека онлайн»: http://biblioclub.ru/
- 5. Научная электронная библиотека (РУНЭБ) «eLIBRARY.RU»: http://elibrary.ru
- 6. Национальная электронная библиотека (НЭБ): http://нэб.рф/
- 7. Базы данных российских журналов компании «East View»: https://dlib.eastview.com/

Научные поисковые системы

- 1. ArXiv.org научно-поисковая система, специализируется в областях: компьютерных наук, астрофизики, физики, математики, квантовой биологии. http://arxiv.org/
- 2. Google Scholar поисковая система по научной литературе. Включает статьи крупных научных издательств, архивы препринтов, публикации на сайтах университетов, научных обществ и других научных организаций. https://scholar.google.ru/
- 3. WorldWideScience.org глобальная научная поисковая система, которая осуществляет поиск информации по национальным и международным научным базам данных и порталам. http://worldwidescience.org/
- 4. SciGuide навигатор по зарубежным научным электронным ресурсам открытого доступа. http://www.prometeus.nsc.ru/sciguide/page0601.ssi

Профессиональные ресурсы сети «Интернет»

- 1. Федеральная информационная система «Единое окно доступа к информационным ресурсам»: http://window.edu.ru/.
- 2. Проект Инициативного Народного Фронта Образования ИНФО-проект. Школа программирования Coding Craft: http://codingcraft.ru/.
- 3. Портал Life-prog: http://life-prog.ru/.
- 4. OpenNet: www.opennet.ru.
- 5. Алгоритмы, методы, программы: algolist.manual.ru.
- 6. Сервер министерства высшего образования: www.informika.ru.

• Описание материально-технической базы

Компьютерный класс (15 ПК): оборудование в собственности. Программное обеспечение: Scilab (свободная лицензия, код доступа не требуется)

11 Язык преподавания

Русский