Государственное бюджетное образовательное учреждение высшего образовання Московской области «Университет «Дубна» (государственный университет «Дубна»)

Филиал «Протвино» Кафедра «Информационные технологии»

УГВЕРЖДАЮ
Филна Директор
"Протвина Дише / Евсиков А.А./
потпись Фамилия И.О.
2020 г.

Рабочая программа дисциплины (модуля)

Методы оптимизации

наименование дисциплины (модуля)

Направление подготовки (специальность) 09.03.01 Информатика и вычислительная техника

код и наименование направления подготовки (специальности)

Уровень высшего образования бакалавриат

бакалавриат, магистратура, специалитет

Направленность (профиль) программы (специализация) «Программное обеспечение вычислительной техники и автоматизированных систем»

Форма обучения очная

очная, очно-заочная, заочная

Протвино, 2020

Преподаватель (преподаватели):

Гусев В.В., доцент, к.ф.-м.н., кафедра информационных технологий

Фамилия И.О., должность, ученая степень, ученое звание, кафедра; подпись

Рабочая программа разработана в соответствии с требованиями ФГОС ВО по направлению подготовки (специальности) высшего образования 09.03.01 Информатика и вычислительная техника

(код и наименование направления подготовки (специальности))

Программа рассмотрена на заседании кафедры <u>информационных технологий</u> (название кафедры)

Протокол заседания №11 «22» июня 2020 г.

Заведующий кафедрой

Нурматова Е.В.

Оглавление

1. Цели и задачи освоения дисциплины (модуля)	4
2. Объекты профессиональной деятельности при изучении дисциплины (модуля)	4
3. Место дисциплины (модуля) в структуре ОПОП	4
4. Планируемые результаты обучения по дисциплине (модулю), соотнесенные с	
планируемыми результатами освоения образовательной программы (компетенциями	
выпускников)	4
5. Объем дисциплины (модуля) в зачетных единицах с указанием количества академических	
или астрономических часов, выделенных на контактную работу обучающихся с	
преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся	5
6. Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием	
отведенного на них количества академических или астрономических часов и виды учебных	
занятий	5
7. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся	
по дисциплине (модулю) и методические указания для обучающихся по освоению	
дисциплины (модулю)	8
8. Применяемые образовательные технологии для различных видов учебных занятий и для	
контроля освоения обучающимися запланированных результатов обучения	8
9. Фонд оценочных средств для промежуточной аттестации по дисциплине (модулю)	8
10 Ресурсное обеспечение	3
11. Язык преподавания	5

1. Цели и задачи освоения дисциплины (модуля)

Цель дисциплины:

- формирование у студентов знаний о математических моделях сложных систем и методов их оптимизации.
- сформировать навыки использования методов оптимизации для решения практических задач;
- заложить основу для дальнейшего изучения современных методов построения, анализа и управления сложными системами

Задачи дисциплины:

- изучение теоретических основ различных задач математического программирования, свойств и методов их решения;
- формирование практических навыков построения и анализа математические модели, используемые в теории методов оптимизации;

2. Объекты профессиональной деятельности при изучении дисциплины (модуля) Объектами профессиональной деятельности в рамках изучаемой дисциплины (модуля) являются:

Математическое обеспечение ЭВМ.

Программное обеспечение средств вычислительной техники и автоматизированных систем (программы, программные комплексы и системы).

3. Место дисциплины (модуля) в структуре ОПОП

Дисциплина Б1.В.ДВ.03.01 «Методы оптимизации» входит в блок 1 дисциплин, формируемой участниками образовательных отношений. Изучается в III семестре II курса.

Приступая к изучению дисциплины, студенты должны иметь твердые знания, навыки, умения и компетенции по предметам «Математический анализ», «Линейная алгебра». Осваиваемые компетенции: ПК-1.

Освоение материала дисциплины позволит студенту быть подготовленным к изучению дисциплин «Теория принятия решений» и к защите выпускной квалификационной работы и последующей профессиональной деятельности по направлению подготовки бакалавров 09.03.01 Информатика и вычислительная техника.

4. Планируемые результаты обучения по дисциплине (модулю), соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями выпускников)

Формируемые компетенции (код компетенции, уровень (этап)освоения) (последний – при наличии в карте компетенции)	Планируемые результаты обучения по дисциплине (модулю), характеризующие этапы формирования компетенций
ПК-1 Способность выполнять интеграцию программных модулей и компонентов и проверять работоспособность программного продукта.	 Знать: основные задачи математического программирования, их свойства и методы решения. методы и средства сборки и интеграции программных модулей и компонент программного обеспечения; Уметь:
	• формулировать практические задачи и программировать основные алгоритмы;

• писать программный код процедур интеграции программных модулей.
 Владеть: навыками использования алгоритмов методов оптимизации при решении практических задач; навыками разработки процедур сборки модулей и компонент программного обеспечения в программный код

результат обучения сформулирован на основании требований профессиональных стандартов:

– Программист 06.001; обобщённая трудовая функция С5 - Интеграция программных модулей и компонент и проверка работоспособности выпусков программного продукта; С/01.5 - Разработка процедур интеграции программных модулей

5. Объем дисциплины (модуля) в зачетных единицах с указанием количества академических или астрономических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся

Объем дисциплины (модуля) составляет 4 зачетных единиц, всего 144 часов, из которых:

51 часов составляет контактная работа обучающегося с преподавателем¹:

- 17 часов лекционные занятия:
- 34 часов практические занятия;
- 54 часа мероприятия промежуточной аттестации⁴ (экзамен),
- 39 часов составляет самостоятельная работа обучающегося.

6. Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических или астрономических часов и виды учебных занятий

виды у коных занити										
№ Темы	Наименование темы	Содержание темы								
1	Задачи математического программирования	Введение. Классификация задач математического программирования. Примеры задач математического программирования.								
2	Задача линейного программирования (ЗЛП).	Примеры задач линейного программирования. Основные термины ЗЛП (целевая функция, допустимое множество решений, оптимальное решение). Формы представления ЗЛП (развернутая, матричная, векторная). Каноническая и стандартная формы ЗЛП. Сведение Общей задачи линейного программирования к стандартной или канонической. Геометрическая интерпретация задачи ЗЛП. Графический способ решения ЗЛП. Анализ допустимой области ЗЛП.								
3	Математические свойства задачи линейного программирования	Выпуклая комбинация точек. Внутренние, граничные и угловые точки выпуклого множества. Замкнутое множество. Свойства выпуклых множеств. Свойство отделимости выпуклых множеств. Выпуклый многогранник. Свойство								

 $^{^{1}}$ Перечень видов учебных занятий уточняется в соответствии с учебным планом.

_

	(рпп)	
	(ЗЛП)	выпуклости допустимой области ЗЛП. Алгебраическое
		определение угловой точки допустимой области ЗЛП.
4	Теория симплекс	Понятие допустимого базисного решения (ДБР). Допустимое
	метода.	базисное решение и угловая точка выпуклого многогранника.
		Основная теорема ЗЛП. Переход от вершины к вершине.
		Построение оптимального базисного плана. Построение
		симплекс таблицы. Вычислительная схема симплексного
		метода. Проблема поиска опорного плана. Метод
		искусственного базиса и симплексный метод
5	Специальные	Целочисленное программирование. Метод ветвей и границ.
	задачи линейного	Транспортная задача. Определение открытой и
	программирования	сбалансированной задачи. Алгоритм привидения открытой
		транспортной задачи к сбалансированной. Свойства
		транспортной задачи. Метод нахождения начальной угловой
		точки.(метод северо-западного угла) Метод потенциалов.
		Примеры транспортных задач. Задача о назначении.
6.	Численные	Методы прямого поиска. Метод деления отрезка пополам,
	методы задачи	метод Фибоначчи, метод золотого сечения. Метод бисекции.
	вычисления	Градиентные методы: метод наискорейшего спуска, метод
	оптимального	Ньютона. Метод последовательной интерполяции.
	решения.	

								В	гом числе:					
Наименование и краткое содержание разделов и тем дисциплины (модуля) Форма промежуточной аттестации по дисциплине (модулю)		Контактная работа (работа во взаимодействии с преподавателем), часы из них ²										Самостоятельная работа обучающегося, часы, из них		
	Всего (часы)	Лекционные занятия	Семинарские занятия	Практические занятия	Лабораторные занятия		Групповые консультации	Индивидуальные консультации	Учебные занятия, направленные на проведение текущего контроля успеваемости (коллоквиумы, практические контрольные занятия и др.)*	Всего	Выполнение домашних заданий	Подготовка рефератов и т.п.	Всего	
			3ce _N	иестр										
Тема 1 Задачи математического программирования		2		2						4				
Тема 2 Задача линейного программирования (ЗЛП)		4		6					ПР-2.1	10	15		15	
Тема 3 Математические свойства задачи линейного программирования (ЗЛП)		4		8						12				
Тема 4 Теория симплекс метода		2		10					ПР-2.2	12	20		20	
Тема 5 Специальные задачи линейного программирования		3		4					ПР-2.3	7	20		20	
Тема 6 Численные методы задачи вычисления оптимального решения		2		4						6	20		20	
Промежуточная аттестация <u>экзамен (указывается форма</u> проведения)**	54	X								_	X			
Итого		17	7 34 51 75								75			

•

 $^{^{2}}$ Перечень видов учебных занятий уточняется в соответствии с учебным планом.

7. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю) и методические указания для обучающихся по освоению дисциплины (модулю)

Задания к выполнению контрольных работ.

Задания к практическим занятиям

8. Применяемые образовательные технологии для различных видов учебных занятий и для контроля освоения обучающимися запланированных результатов обучения

Указываются образовательные технологии, используемые при реализации различных видов учебной работы (занятий) и дающие наиболее эффективные результаты освоения дисциплины (модуля).

Перечень обязательных видов работы студента:

- Посещение лекционных занятий;
- посещение семинарских занятий;
- выполнение контрольных работ;
- самостоятельная работа студента (СРС) направлена на закрепление навыков самостоятельного выполнения тематических заданий;
- подготовка к опросу (рубежный контроль);
- участие в групповых дискуссиях на семинарских занятиях;
- сдача экзамена.

9. Фонд оценочных средств для промежуточной аттестации по дисциплине (модулю)

Перечень компетенций выпускников образовательной программы с указанием результатов обучения (знаний, умений, владений), характеризующих этапы их формирования, описание показателей и критериев оценивания компетенций на различных этапах их формирования.

Компетенция ПК-1: способность выполнять интеграцию программных модулей и компонентов и проверять работоспособность программного продукта

Описание шкал оценивания

По итогам работы в семестре студент может получить максимально **70** баллов. Итоговой формой контроля является экзамен. На экзамене студент может набрать максимально **30** баллов.

В течение семестра студент может заработать баллы за следующие виды работ:

No॒	Вид работы	Сумма баллов
1	Работа на практических занятиях	32
2	Аудиторные занятия (посещение)	17
3	Решение контрольных заданий	21
	(самостоятельная работа)	
	Итого:	70

Если к моменту окончания семестра студент набирает от **51** до **70** баллов, то он получает допуск к экзамену.

Если студент к моменту окончания семестра набирает от **61** до **70** баллов, то он может получить автоматическую оценку «удовлетворительно». При желании повысить свою оценку, студент имеет право отказаться от автоматической оценки и сдать экзамен.

Если студент не набрал минимального числа баллов (**51** балл), то он не получает допуск к экзамену.

Соответствие рейтинговых баллов и академических оценок

Общая	
сумма	Итоговая оценка
баллов за	итоговая оценка
семестр	
86-100	Отлично
71-85	Хорошо
51-70	Допуск к экзамену
в том	
числе:	Возможность получения автоматической оценки
61-70	«удовлетворительно»
51-60	Только допуск к экзамену
0-50 *	Неудовлетворительно (студент не допущен к экзамену)

Текущий контроль успеваемости осуществляется в процессе выполнения практических и самостоятельных работ в соответствии с ниже приведенным графиком.

		Недели работ															
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
ПР-2					B3 1			33 1	B3 2			33-2	B3 3			33 3	

ВЗ – выдача задания

33 – защита задания

Компетенция ПК-1 способность выполнять интеграцию программных модулей и компонентов и проверять работоспособность программного продукта

код и формулировка компетенции

РЕЗУЛЬТАТ ОБУЧЕНИЯ по дисциплине (модулю) *)	Уровень освоения компетенци и**)	оценива	КРИТЕРИИ ОЦЕНИВАНИЯ РЕЗУЛЬТАТА ОБУЧЕНИЯ по дисциплине (модулю) ШКАЛА оценивания (критерии берутся из соответствующих карт компетенций, шкала оценивания (4 или более шагов) устанавливается в зависимости от того, какая система оценивания (традиционная или балльнорейтинговая) применяется)							
		1	2	3	4	5				
Знать (ПК-1): — основные задачи математи ческого программ ирования, их свойства и методы решения. — методы и	I - пороговый	Отсут ствие знани й	Не знает или слабо знает методы и средства сборки и интеграции программны х модулей и компонент программно го обеспечения	Удовлетв орительн о знает методы и средства сборки и интеграц ии программ ных модулей и компонен	Хорошо знает основные понятия по методы и средства сборки и интеграции программны х модулей и компонент программно го	Демонстрир ует свободное и уверенное знание основных понятий по методам и средства сборки и интеграции программны х модулей и	Устный опрос			

средства сборки и интеграци и программ ных модулей и компонен т программ ного обеспечен ия;			; Допускает множествен ные грубые ошибки.	т программ ного обеспече ния; Допускае т достаточ но серьезны е ошибки.	обеспечения; Допускает отдельные негрубые ошибки.	компонент программно го обеспечения ; Не допускает ошибок.	
Уметь (ПК-1): • формулир овать практичес кие задачи и программ ировать основные алгоритм ы; • писать программ ный код процедур интеграци и программ ных модулей.	I - пороговый	Отсут ствие умени й	Демонстрир ует частичное умение писать программны й код процедур интеграции программны х модулей. Допускает множествен ные грубые ошибки.	Демонст рирует удовлетв орительн ое писать программ ный код процедур интеграц ии программ ных модулей Допускае т достаточ но серьезны е ошибки.	Демонстрир ует достаточно устойчивое умение писать программны й код процедур интеграции программны х модулей. Допускает отдельные негрубые ошибки.	Демонстрир ует устойчивое умение писать программны й код процедур интеграции программны х модулей. Не допускает ошибок.	Выполне ние практич еского задания
Владеть (ПК-1): • навыкам и использо вания алгорит мов методов оптимиз ации при решении практиче ских задач; • навыкам	I - пороговый	Отсут ствие владе ния	Не владеет или демонстрир ует низкий уровень владения навыками разработки процедур сборки модулей и компонент программно го обеспечения в программны й код	Демонст рирует удовлетв орительн ый уровень владения навыкам и разработ ки процедур сборки модулей и компонен т программ	Демонстрир ует хороший уровень владения навыками разработки процедур сборки модулей и компонент программно го обеспечения в программны й код Допускает	Демонстрир ует высокий уровень владения навыками разработки процедур сборки модулей и компонент программно го обеспечения в программны й код Не допускает	Выполне ние практич еского задания

и разработ ки процеду р сборки модулей и компоне нт програм много обеспече ния в програм мный код		Допускает множествен ные грубые ошибки.	ного обеспече ния в программ ный код. Допускае т достаточ но серьезны е ошибки.	отдельные негрубые ошибки.	ошибок.	
---	--	---	---	----------------------------------	---------	--

Типовые контрольные задания или иные материалы, необходимые для оценки результатов обучения, характеризующих этапы формирования компетенций и (или) для итогового контроля сформированности компетенции.

Варианты контрольных работ

- 1. Приведение ЗЛП к стандартному виду. Графический способ решения ЗЛП. Вариант 1.
 - 1. Привести задачу линейного программирования к канонической форме:

$$\begin{cases} x_1 - 2x_2 + x_3 \ge 4 \\ x_1 + x_2 - 3x_3 \le 9 \\ x_1 + 3x_2 + 2x_3 = 10 \end{cases}$$
$$x_1 \ge 0, x_2 \le 0, x_3 \ge 0$$
$$2x_1 + x_2 - x_3 \Rightarrow \max$$

Решить графическим способом задачу линейного программирования:

$$x_{1} + 2x_{2} \Rightarrow \max$$

$$\begin{cases}
4x_{1} - 2x_{2} \le 12 \\
-x_{1} + 3x_{2} \le 6 \\
2x_{1} + 4x_{2} \le 16
\end{cases}$$

$$x_{1}, x_{2} \ge 0$$

2. Симплекс метод

Залача 1.

Дана задача линейного программирования

$$c_1x_1 + c_2x_2 + c_3x_3 \Rightarrow \max$$

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} * \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \le \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

$$x_1, x_2, x_3 \ge 0$$

- 1. Привести задачу к канонической форме.
- 2. Найти допустимое базисное решение.
- 3. Составить симплекс таблицу, найти направляющую строку и направляющий столбец.
- 4. Перейти к новой вершине
- 3. Решение Транспортной задачи

Дано:

а)
$$C = \begin{pmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33} \end{pmatrix}$$
 матрица стоимости перевозок c_{ij} - стоимость перевозки единицы продукции \vdots

из пункта i в пункт j

- б) $\vec{a} = (a_1, a_2, a_3)$ наличие продукции на 3-ёх складах
- в) $\vec{b} = (b_1, b_2, b_3)$ потребность в продукции 3-ёх потребителей

Задание:

- 1) Привести задачу к сбалансированной форме
- 2) Найти допустимые перевозки методом «северо-западного угла»
- 3) Методом потенциалов найти наилучший план перевозок.

Список теоретических вопросов

- 1. Понятие линейного программирования как одного из разделов математического программирования. Примеры моделей, приводящих к задаче линейного программирования.
- 2. Задача о рационе как задача линейного программирования.
- 3. Задача о распределении ресурсов как задача линейного программирования.
- 4. Запись задачи линейного программирования в развёрнутой и матричной форме. Понятие целевой функции, оптимального плана, допустимой области.
- 5. Стандартная и каноническая формы задачи линейного программирования. Правила приведения общей задачи линейного программирования к стандартной и канонической форме.
- 6. Геометрическая интерпретация задачи линейного программирования для случая 2-ух переменных. Возможные виды допустимой области.
- 7. Понятие выпуклого множества, выпуклой комбинации точек, отрезка.
- 8. Определение вершины выпуклого многогранника.
- 9. Переход от вершины к вершине допустимой области задачи линейного программирования.
- 10. Способ отыскания и определения оптимального плана. Этапы алгоритма симплексметода. Понятие направляющего столбца и направляющей строки.
- 11. Понятие двойственности в задаче линейного программирования
- 12. Транспортная задача как задача линейного программирования.
- 13. Метод "северо-западного угла" для нахождения начальной крайней точки.
- 14. Решение транспортной задачи методом потенциалов.
- 15. Понятие целочисленного программирования. Задача о ранце.
- 16. Модели задач целочисленного программирования. Задача о коммивояжере.
- 17. Метод ветвей и границ.
- 18. Методы прямого поиска.
- 19. Метод деления отрезка пополам.
- 20. Метод Фибоначчи
- 21. Метод золотого сечения.
- 22. Метод бисекции.
- 23. Метод наискорейшего спускаю
- 24. Метод Ньютона.
- 25. Метод последовательной интерполяции.

Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

10 Ресурсное обеспечение

• Перечень основной и дополнительной учебной литературы Основная учебная литература

- 1. Аттетков, А. В. Методы оптимизации: Учебное пособие / А.В. Аттетков, В.С. Зарубин, А.Н. Канатников. М.: ИЦ РИОР: НИЦ Инфра-М, 2019. 270 с.: ил.; (Высшее образование: Бакалавриат). ISBN 978-5-16-103309-8. Текст : электронный // ЭБС "Znanium.com". URL: https://new.znanium.com/catalog/product/1002733 (дата обращения: 14.04.2020). Режим доступа: ограниченный по логину и паролю
- 2. Колемаев, В. А. Математические методы и модели исследования операций: учебник для студентов вузов / В. А. Колемаев; под ред. В. А. Колемаева. Москва: ЮНИТИ-ДАНА, 2012. 592 с. ISBN 978-5-238-01325-1. Текст: электронный. // ЭБС "Znanium.com". URL: https://new.znanium.com/catalog/product/391871 (дата обращения: 27.04.2020). Режим доступа: ограниченный по логину и паролю

Дополнительная учебная литература

- 1. Барский, А.Б. Параллельные информационные технологии: Учебное пособие / А.Б. Барский. М.: Интернет Университет Информационных Технологий; Бином. Лаборатория знаний, 2007. 503 с.: ил.: табл.
- 2. Пантелеев, А. В. Методы оптимизации. Практический курс: учебное пособие с мультимедиа сопровождением [Электронный ресурс] / А. В. Пантелеев, Т. А. Летова. Москва: Логос, 2011. 424 с: ил. (Новая университетская библиотека). ISBN 978-5-98704-540-4. Текст: электронный. // ЭБС "Znanium.com". URL: https://new.znanium.com/catalog/product/469213 (дата обращения: 27.04.2020). Режим доступа: ограниченный по логину и паролю
- 3. Сдвижков, О. А. Практикум по методам оптимизации: Практикум / Сдвижков О.А. М.:Вузовский учебник, НИЦ ИНФРА-М, 2020. 231 с. ISBN 978-5-16-101355-7. Текст : электронный. // ЭБС "Znanium.com". URL: https://new.znanium.com/catalog/product/1036460 (дата обращения: 14.04.2020). Режим доступа: ограниченный по логину и паролю

• Периодические издания

- 1. Вестник Московского университета. Серия 15. Вычислительная математика и кибернетика: научный журнал / Учредитель: МГУ им. М.В. Ломоносова; гл. ред. академик РАН Моисеев Е.И. М.: ФГБОУ ВО МГУ им. М.В. Ломоносова Журнал выходит 2 раза в полуг. Основан в 1977 году. ISSN 0137-0782. Текст : электронный. Полные электронные версии статей журнала доступны по подписке на сайте научной электронной библиотеки «eLIBRARY.RU»: https://www.elibrary.ru/title_about.asp?id=8373
- 2. Вестник Московского государственного областного университета. Серия: физикаматематика: научный журнал / Учредитель: Московский государственный областной университет; гл. ред. Бугаев А.С. М.:МГОУ. Журнал выходит 6 раз в год. Основан в 1998 году ISSN 2310-7251. Текст : электронный. Полные электронные версии статей журнала доступны на сайте научной электронной библиотеки «eLIBRARY.RU»: https://elibrary.ru/title_about.asp?id=25657
- 3. Вестник Московского университета. Серия 1. Математика. Механика: научный журнал / Учредитель: МГУ им. М.В. Ломоносова; гл. ред. Чубариков В.Н. М.: ФГБОУ ВО МГУ им. М.В. Ломоносова Журнал выходит 6 раз в год. Основан в 1946 году. ISSN 0579-9368. Текст: электронный. Полные электронные версии статей журнала доступны по подписке в БД периодических изданий «East View»: https://dlib.eastview.com/browse/publication/9045/udb/890
- 4. Дискретный анализ и исследование операций: научный журнал / Учредители: Сибирское отделение РАН, Институт математики им. С.Л. Соболева СО РАН; гл. ред. В.Л. Береснев. Журнал выходит 6 раз в год. Основан в 1994 году. ISSN 1560-7542. Текст: электронный. Полные электронные версии статей журнала доступны

- по подписке на сайте научной электронной библиотеки «eLIBRARY.RU»: https://elibrary.ru/title_about.asp?id=25528
- 5. Программные продукты и системы: международный научно-практический журнал / Учредитель: Куприянов В.П.; гл. ред. Савин Г.И. Тверь: Центрпрограммсистем. журнал выходит 2 раза в полуг. Основан в 1988 году. ISSN: 0236-235X. Текст: электронный. Полные электронные версии статей представлены на сайте журнала: http://swsys.ru/

• Перечень ресурсов информационно-телекоммуникационной сети «Интернет» Электронно-библиотечные системы и базы данных

- 1. 3FC «Znanium.com»: http://znanium.com/
- 2. ЭБС «Лань»: https://e.lanbook.com/
- 3. ЭБС «Юрайт»: https://biblio-online.ru/
- 4. ЭБС «Университетская библиотека онлайн»: http://biblioclub.ru/
- 5. Научная электронная библиотека (РУНЭБ) «eLIBRARY.RU»: http://elibrary.ru
- 6. Национальная электронная библиотека (НЭБ): http://нэб.рф/
- 7. Базы данных российских журналов компании «East View»: https://dlib.eastview.com/

Научные поисковые системы

- 1. Math-Net.Ru современная информационная система, предоставляющая российским и зарубежным математикам различные возможности поиска информации о математической жизни в России http://www.mathnet.ru/
- 2. Google Scholar поисковая система по научной литературе. Включает статьи крупных научных издательств, архивы препринтов, публикации на сайтах университетов, научных обществ и других научных организаций https://scholar.google.ru/
- 3. SciGuide навигатор по зарубежным научным электронным ресурсам открытого доступа. http://www.prometeus.nsc.ru/sciguide/page0601.ssi
- 4. ArXiv.org научно-поисковая система, специализируется в областях: компьютерных наук, астрофизики, физики, математики, квантовой биологии. http://arxiv.org/
- 5. WorldWideScience.org глобальная научная поисковая система, которая осуществляет поиск информации по национальным и международным научным базам данных и порталам. http://worldwidescience.org/

Профессиональные ресурсы сети «Интернет»

- 1. Федеральная информационная система «Единое окно доступа к информационным ресурсам»: http://window.edu.ru/
- 2. Образовательный математический сайт EXPonenta.ru http://exponenta.ru/
- 3. Математический сайт Math.ru http://math.ru/lib/
- 4. Сайт РАН Институт Вычислительной математики. http://www.inm.ras.ru/
 - Перечень информационных технологий, используемых при осуществлении образовательного процесса, включая программное обеспечение, информационные справочные системы (при необходимости)
 - Проведение практических занятий по дисциплине предполагается использование специализированных аудиторий, оснащенных персональными компьютерами, объединенными в локальную сеть и имеющих доступ к ресурсам глобальной сети Интернет. Программная среда SciLab (свободная лицензия).
 - Для выполнения заданий самостоятельной подготовки обучающиеся обеспечиваются литературой, а также в определённом порядке могут получать доступ к информационным ресурсам Интернета.
 - Дисциплина обеспечена необходимым программным обеспечением, которое находится в свободном доступе (программы Openoffice, свободная лицензия, код доступа не требуется).

- Описание материально-технической базы
- Компьютерный класс (15 ПК): оборудование в собственности

11. Язык преподавания

Русский